Mailing List Archive

[PATCH V5 08/10] Introduce Xen PCI Passthrough, PCI config space helpers (2/3)
From: Allen Kay <allen.m.kay@intel.com>

A more complete history can be found here:
git://xenbits.xensource.com/qemu-xen-unstable.git

Signed-off-by: Allen Kay <allen.m.kay@intel.com>
Signed-off-by: Guy Zana <guy@neocleus.com>
Signed-off-by: Anthony PERARD <anthony.perard@citrix.com>
---
hw/xen_pci_passthrough.c | 15 +
hw/xen_pci_passthrough_config_init.c | 2131 ++++++++++++++++++++++++++++++++++
2 files changed, 2146 insertions(+), 0 deletions(-)

diff --git a/hw/xen_pci_passthrough.c b/hw/xen_pci_passthrough.c
index 998470b..c816ed5 100644
--- a/hw/xen_pci_passthrough.c
+++ b/hw/xen_pci_passthrough.c
@@ -360,6 +360,11 @@ out:
PT_ERR(d, "pci_write_block failed. return value: %d.\n", rc);
}
}
+
+ if (s->pm_state != NULL && s->pm_state->flags & PT_FLAG_TRANSITING) {
+ qemu_mod_timer(s->pm_state->pm_timer,
+ qemu_get_clock_ms(rt_clock) + s->pm_state->pm_delay);
+ }
}

/* ioport/iomem space*/
@@ -706,6 +711,13 @@ static int pt_initfn(PCIDevice *pcidev)
/* Handle real device's MMIO/PIO BARs */
pt_register_regions(s);

+ /* reinitialize each config register to be emulated */
+ if (pt_config_init(s)) {
+ PT_ERR(pcidev, "PCI Config space initialisation failed.\n");
+ host_pci_device_put(s->real_device);
+ return -1;
+ }
+
/* Bind interrupt */
if (!s->dev.config[PCI_INTERRUPT_PIN]) {
PT_LOG(pcidev, "no pin interrupt\n");
@@ -798,6 +810,9 @@ static int pt_unregister_device(PCIDevice *pcidev)
}
}

+ /* delete all emulated config registers */
+ pt_config_delete(s);
+
/* unregister real device's MMIO/PIO BARs */
pt_unregister_regions(s);

diff --git a/hw/xen_pci_passthrough_config_init.c b/hw/xen_pci_passthrough_config_init.c
index 1e9de64..ae64544 100644
--- a/hw/xen_pci_passthrough_config_init.c
+++ b/hw/xen_pci_passthrough_config_init.c
@@ -1,11 +1,2142 @@
+/*
+ * Copyright (c) 2007, Neocleus Corporation.
+ * Copyright (c) 2007, Intel Corporation.
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2. See
+ * the COPYING file in the top-level directory.
+ *
+ * Alex Novik <alex@neocleus.com>
+ * Allen Kay <allen.m.kay@intel.com>
+ * Guy Zana <guy@neocleus.com>
+ *
+ * This file implements direct PCI assignment to a HVM guest
+ */
+
+#include "qemu-timer.h"
+#include "xen_backend.h"
#include "xen_pci_passthrough.h"

+#define PT_MERGE_VALUE(value, data, val_mask) \
+ (((value) & (val_mask)) | ((data) & ~(val_mask)))
+
+#define PT_INVALID_REG 0xFFFFFFFF /* invalid register value */
+
+/* prototype */
+
+static int pt_ptr_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
+ uint32_t real_offset, uint32_t *data);
+static int pt_init_pci_config(XenPCIPassthroughState *s);
+
+
+/* helper */
+
+/* A return value of 1 means the capability should NOT be exposed to guest. */
+static int pt_hide_dev_cap(const HostPCIDevice *d, uint8_t grp_id)
+{
+ switch (grp_id) {
+ case PCI_CAP_ID_EXP:
+ /* The PCI Express Capability Structure of the VF of Intel 82599 10GbE
+ * Controller looks trivial, e.g., the PCI Express Capabilities
+ * Register is 0. We should not try to expose it to guest.
+ *
+ * The datasheet is available at
+ * http://download.intel.com/design/network/datashts/82599_datasheet.pdf
+ *
+ * See 'Table 9.7. VF PCIe Configuration Space' of the datasheet, the
+ * PCI Express Capability Structure of the VF of Intel 82599 10GbE
+ * Controller looks trivial, e.g., the PCI Express Capabilities
+ * Register is 0, so the Capability Version is 0 and
+ * pt_pcie_size_init() would fail.
+ */
+ if (d->vendor_id == PCI_VENDOR_ID_INTEL &&
+ d->device_id == PCI_DEVICE_ID_INTEL_82599_VF) {
+ return 1;
+ }
+ break;
+ }
+ return 0;
+}
+
+/* find emulate register group entry */
XenPTRegGroup *pt_find_reg_grp(XenPCIPassthroughState *s, uint32_t address)
{
+ XenPTRegGroup *entry = NULL;
+
+ /* find register group entry */
+ QLIST_FOREACH(entry, &s->reg_grp_tbl, entries) {
+ /* check address */
+ if ((entry->base_offset <= address)
+ && ((entry->base_offset + entry->size) > address)) {
+ return entry;
+ }
+ }
+
+ /* group entry not found */
return NULL;
}

+/* find emulate register entry */
XenPTReg *pt_find_reg(XenPTRegGroup *reg_grp, uint32_t address)
{
+ XenPTReg *reg_entry = NULL;
+ XenPTRegInfo *reg = NULL;
+ uint32_t real_offset = 0;
+
+ /* find register entry */
+ QLIST_FOREACH(reg_entry, &reg_grp->reg_tbl_list, entries) {
+ reg = reg_entry->reg;
+ real_offset = reg_grp->base_offset + reg->offset;
+ /* check address */
+ if ((real_offset <= address)
+ && ((real_offset + reg->size) > address)) {
+ return reg_entry;
+ }
+ }
+
return NULL;
}
+
+/* parse BAR */
+static PTBarFlag pt_bar_reg_parse(XenPCIPassthroughState *s, XenPTRegInfo *reg)
+{
+ PCIDevice *d = &s->dev;
+ XenPTRegion *region = NULL;
+ PCIIORegion *r;
+ int index = 0;
+
+ /* check 64bit BAR */
+ index = pt_bar_offset_to_index(reg->offset);
+ if ((0 < index) && (index < PCI_ROM_SLOT)) {
+ int flags = s->real_device->io_regions[index - 1].flags;
+
+ if ((flags & IORESOURCE_MEM) && (flags & IORESOURCE_MEM_64)) {
+ region = &s->bases[index - 1];
+ if (region->bar_flag != PT_BAR_FLAG_UPPER) {
+ return PT_BAR_FLAG_UPPER;
+ }
+ }
+ }
+
+ /* check unused BAR */
+ r = &d->io_regions[index];
+ if (r->size == 0) {
+ return PT_BAR_FLAG_UNUSED;
+ }
+
+ /* for ExpROM BAR */
+ if (index == PCI_ROM_SLOT) {
+ return PT_BAR_FLAG_MEM;
+ }
+
+ /* check BAR I/O indicator */
+ if (s->real_device->io_regions[index].flags & IORESOURCE_IO) {
+ return PT_BAR_FLAG_IO;
+ } else {
+ return PT_BAR_FLAG_MEM;
+ }
+}
+
+
+/****************
+ * general register functions
+ */
+
+/* register initialization function */
+
+static int pt_common_reg_init(XenPCIPassthroughState *s,
+ XenPTRegInfo *reg, uint32_t real_offset,
+ uint32_t *data)
+{
+ *data = reg->init_val;
+ return 0;
+}
+
+/* Read register functions */
+
+static int pt_byte_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint8_t *value, uint8_t valid_mask)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ uint8_t valid_emu_mask = 0;
+
+ /* emulate byte register */
+ valid_emu_mask = reg->emu_mask & valid_mask;
+ *value = PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
+
+ return 0;
+}
+static int pt_word_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint16_t *value, uint16_t valid_mask)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ uint16_t valid_emu_mask = 0;
+
+ /* emulate word register */
+ valid_emu_mask = reg->emu_mask & valid_mask;
+ *value = PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
+
+ return 0;
+}
+static int pt_long_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint32_t *value, uint32_t valid_mask)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ uint32_t valid_emu_mask = 0;
+
+ /* emulate long register */
+ valid_emu_mask = reg->emu_mask & valid_mask;
+ *value = PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
+
+ return 0;
+}
+
+/* Write register functions */
+
+static int pt_byte_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint8_t *value, uint8_t dev_value,
+ uint8_t valid_mask)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ uint8_t writable_mask = 0;
+ uint8_t throughable_mask = 0;
+
+ /* modify emulate register */
+ writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
+ cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
+
+ /* create value for writing to I/O device register */
+ throughable_mask = ~reg->emu_mask & valid_mask;
+ *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
+
+ return 0;
+}
+static int pt_word_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint16_t *value, uint16_t dev_value,
+ uint16_t valid_mask)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ uint16_t writable_mask = 0;
+ uint16_t throughable_mask = 0;
+
+ /* modify emulate register */
+ writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
+ cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
+
+ /* create value for writing to I/O device register */
+ throughable_mask = ~reg->emu_mask & valid_mask;
+ *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
+
+ return 0;
+}
+static int pt_long_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint32_t *value, uint32_t dev_value,
+ uint32_t valid_mask)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ uint32_t writable_mask = 0;
+ uint32_t throughable_mask = 0;
+
+ /* modify emulate register */
+ writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
+ cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
+
+ /* create value for writing to I/O device register */
+ throughable_mask = ~reg->emu_mask & valid_mask;
+ *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
+
+ return 0;
+}
+
+/* common restore register fonctions */
+static int pt_byte_reg_restore(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint32_t real_offset, uint8_t dev_value,
+ uint8_t *value)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ PCIDevice *d = &s->dev;
+
+ /* use I/O device register's value as restore value */
+ *value = pci_get_byte(d->config + real_offset);
+
+ /* create value for restoring to I/O device register */
+ *value = PT_MERGE_VALUE(*value, dev_value, reg->emu_mask);
+
+ return 0;
+}
+static int pt_word_reg_restore(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint32_t real_offset, uint16_t dev_value,
+ uint16_t *value)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ PCIDevice *d = &s->dev;
+
+ /* use I/O device register's value as restore value */
+ *value = pci_get_word(d->config + real_offset);
+
+ /* create value for restoring to I/O device register */
+ *value = PT_MERGE_VALUE(*value, dev_value, reg->emu_mask);
+
+ return 0;
+}
+
+
+/* XenPTRegInfo declaration
+ * - only for emulated register (either a part or whole bit).
+ * - for passthrough register that need special behavior (like interacting with
+ * other component), set emu_mask to all 0 and specify r/w func properly.
+ * - do NOT use ALL F for init_val, otherwise the tbl will not be registered.
+ */
+
+/********************
+ * Header Type0
+ */
+
+static int pt_vendor_reg_init(XenPCIPassthroughState *s,
+ XenPTRegInfo *reg, uint32_t real_offset,
+ uint32_t *data)
+{
+ *data = s->real_device->vendor_id;
+ return 0;
+}
+static int pt_device_reg_init(XenPCIPassthroughState *s,
+ XenPTRegInfo *reg, uint32_t real_offset,
+ uint32_t *data)
+{
+ *data = s->real_device->device_id;
+ return 0;
+}
+static int pt_status_reg_init(XenPCIPassthroughState *s,
+ XenPTRegInfo *reg, uint32_t real_offset,
+ uint32_t *data)
+{
+ XenPTRegGroup *reg_grp_entry = NULL;
+ XenPTReg *reg_entry = NULL;
+ uint32_t reg_field = 0;
+
+ /* find Header register group */
+ reg_grp_entry = pt_find_reg_grp(s, PCI_CAPABILITY_LIST);
+ if (reg_grp_entry) {
+ /* find Capabilities Pointer register */
+ reg_entry = pt_find_reg(reg_grp_entry, PCI_CAPABILITY_LIST);
+ if (reg_entry) {
+ /* check Capabilities Pointer register */
+ if (reg_entry->data) {
+ reg_field |= PCI_STATUS_CAP_LIST;
+ } else {
+ reg_field &= ~PCI_STATUS_CAP_LIST;
+ }
+ } else {
+ xen_shutdown_fatal_error("Internal error: Couldn't find XenPTReg*"
+ " for Capabilities Pointer register."
+ " (%s)\n", __func__);
+ return -1;
+ }
+ } else {
+ xen_shutdown_fatal_error("Internal error: Couldn't find XenPTRegGroup"
+ " for Header. (%s)\n", __func__);
+ return -1;
+ }
+
+ *data = reg_field;
+ return 0;
+}
+static int pt_header_type_reg_init(XenPCIPassthroughState *s,
+ XenPTRegInfo *reg, uint32_t real_offset,
+ uint32_t *data)
+{
+ /* read PCI_HEADER_TYPE */
+ *data = reg->init_val | 0x80;
+ return 0;
+}
+
+/* initialize Interrupt Pin register */
+static int pt_irqpin_reg_init(XenPCIPassthroughState *s,
+ XenPTRegInfo *reg, uint32_t real_offset,
+ uint32_t *data)
+{
+ *data = pci_read_intx(s);
+ return 0;
+}
+
+/* Command register */
+static int pt_cmd_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint16_t *value, uint16_t valid_mask)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ uint16_t valid_emu_mask = 0;
+ uint16_t emu_mask = reg->emu_mask;
+
+ if (s->is_virtfn) {
+ emu_mask |= PCI_COMMAND_MEMORY;
+ }
+
+ /* emulate word register */
+ valid_emu_mask = emu_mask & valid_mask;
+ *value = PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
+
+ return 0;
+}
+static int pt_cmd_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint16_t *value, uint16_t dev_value,
+ uint16_t valid_mask)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ uint16_t writable_mask = 0;
+ uint16_t throughable_mask = 0;
+ uint16_t wr_value = *value;
+ uint16_t emu_mask = reg->emu_mask;
+
+ if (s->is_virtfn) {
+ emu_mask |= PCI_COMMAND_MEMORY;
+ }
+
+ /* modify emulate register */
+ writable_mask = ~reg->ro_mask & valid_mask;
+ cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
+
+ /* create value for writing to I/O device register */
+ throughable_mask = ~emu_mask & valid_mask;
+
+ if (*value & PCI_COMMAND_INTX_DISABLE) {
+ throughable_mask |= PCI_COMMAND_INTX_DISABLE;
+ } else {
+ if (s->machine_irq) {
+ throughable_mask |= PCI_COMMAND_INTX_DISABLE;
+ }
+ }
+
+ *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
+
+ /* mapping BAR */
+ pt_bar_mapping(s, wr_value & PCI_COMMAND_IO,
+ wr_value & PCI_COMMAND_MEMORY);
+
+ return 0;
+}
+static int pt_cmd_reg_restore(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint32_t real_offset, uint16_t dev_value,
+ uint16_t *value)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ PCIDevice *d = &s->dev;
+ uint16_t restorable_mask = 0;
+
+ /* use I/O device register's value as restore value */
+ *value = pci_get_word(d->config + real_offset);
+
+ /* create value for restoring to I/O device register
+ * but do not include Fast Back-to-Back Enable bit.
+ */
+ restorable_mask = reg->emu_mask & ~PCI_COMMAND_FAST_BACK;
+ *value = PT_MERGE_VALUE(*value, dev_value, restorable_mask);
+
+ if (!s->machine_irq) {
+ *value |= PCI_COMMAND_INTX_DISABLE;
+ } else {
+ *value &= ~PCI_COMMAND_INTX_DISABLE;
+ }
+
+ return 0;
+}
+
+/* BAR */
+#define PT_BAR_MEM_RO_MASK 0x0000000F /* BAR ReadOnly mask(Memory) */
+#define PT_BAR_MEM_EMU_MASK 0xFFFFFFF0 /* BAR emul mask(Memory) */
+#define PT_BAR_IO_RO_MASK 0x00000003 /* BAR ReadOnly mask(I/O) */
+#define PT_BAR_IO_EMU_MASK 0xFFFFFFFC /* BAR emul mask(I/O) */
+
+static inline uint32_t base_address_with_flags(HostPCIIORegion *hr)
+{
+ if ((hr->flags & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) {
+ return hr->base_addr | (hr->flags & ~PCI_BASE_ADDRESS_IO_MASK);
+ } else {
+ return hr->base_addr | (hr->flags & ~PCI_BASE_ADDRESS_MEM_MASK);
+ }
+}
+
+static int pt_bar_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
+ uint32_t real_offset, uint32_t *data)
+{
+ uint32_t reg_field = 0;
+ int index;
+
+ /* get BAR index */
+ index = pt_bar_offset_to_index(reg->offset);
+ if (index < 0) {
+ PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
+ return -1;
+ }
+
+ /* set initial guest physical base address to -1 */
+ s->bases[index].e_physbase = -1;
+
+ /* set BAR flag */
+ s->bases[index].bar_flag = pt_bar_reg_parse(s, reg);
+ if (s->bases[index].bar_flag == PT_BAR_FLAG_UNUSED) {
+ reg_field = PT_INVALID_REG;
+ }
+
+ *data = reg_field;
+ return 0;
+}
+static int pt_bar_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint32_t *value, uint32_t valid_mask)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ uint32_t valid_emu_mask = 0;
+ uint32_t bar_emu_mask = 0;
+ int index;
+
+ /* get BAR index */
+ index = pt_bar_offset_to_index(reg->offset);
+ if (index < 0) {
+ PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
+ return -1;
+ }
+
+ /* use fixed-up value from kernel sysfs */
+ *value = base_address_with_flags(&s->real_device->io_regions[index]);
+
+ /* set emulate mask depend on BAR flag */
+ switch (s->bases[index].bar_flag) {
+ case PT_BAR_FLAG_MEM:
+ bar_emu_mask = PT_BAR_MEM_EMU_MASK;
+ break;
+ case PT_BAR_FLAG_IO:
+ bar_emu_mask = PT_BAR_IO_EMU_MASK;
+ break;
+ case PT_BAR_FLAG_UPPER:
+ bar_emu_mask = PT_BAR_ALLF;
+ break;
+ default:
+ break;
+ }
+
+ /* emulate BAR */
+ valid_emu_mask = bar_emu_mask & valid_mask;
+ *value = PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
+
+ return 0;
+}
+static int pt_bar_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint32_t *value, uint32_t dev_value,
+ uint32_t valid_mask)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ XenPTRegGroup *reg_grp_entry = NULL;
+ XenPTReg *reg_entry = NULL;
+ XenPTRegion *base = NULL;
+ PCIDevice *d = &s->dev;
+ PCIIORegion *r;
+ uint32_t writable_mask = 0;
+ uint32_t throughable_mask = 0;
+ uint32_t bar_emu_mask = 0;
+ uint32_t bar_ro_mask = 0;
+ uint32_t new_addr, last_addr;
+ uint32_t prev_offset;
+ uint32_t r_size = 0;
+ int index = 0;
+
+ /* get BAR index */
+ index = pt_bar_offset_to_index(reg->offset);
+ if (index < 0) {
+ PT_ERR(d, "Internal error: Invalid BAR index [%d].\n", index);
+ return -1;
+ }
+
+ r = &d->io_regions[index];
+ base = &s->bases[index];
+ r_size = pt_get_emul_size(base->bar_flag, r->size);
+
+ /* set emulate mask and read-only mask depend on BAR flag */
+ switch (s->bases[index].bar_flag) {
+ case PT_BAR_FLAG_MEM:
+ bar_emu_mask = PT_BAR_MEM_EMU_MASK;
+ bar_ro_mask = PT_BAR_MEM_RO_MASK | (r_size - 1);
+ break;
+ case PT_BAR_FLAG_IO:
+ bar_emu_mask = PT_BAR_IO_EMU_MASK;
+ bar_ro_mask = PT_BAR_IO_RO_MASK | (r_size - 1);
+ break;
+ case PT_BAR_FLAG_UPPER:
+ bar_emu_mask = PT_BAR_ALLF;
+ bar_ro_mask = 0; /* all upper 32bit are R/W */
+ break;
+ default:
+ break;
+ }
+
+ /* modify emulate register */
+ writable_mask = bar_emu_mask & ~bar_ro_mask & valid_mask;
+ cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
+
+ /* check whether we need to update the virtual region address or not */
+ switch (s->bases[index].bar_flag) {
+ case PT_BAR_FLAG_MEM:
+ /* nothing to do */
+ break;
+ case PT_BAR_FLAG_IO:
+ new_addr = cfg_entry->data;
+ last_addr = new_addr + r_size - 1;
+ /* check invalid address */
+ if (last_addr <= new_addr || !new_addr || last_addr >= UINT16_MAX) {
+ /* check 64K range */
+ if ((last_addr >= UINT16_MAX) &&
+ (cfg_entry->data != (PT_BAR_ALLF & ~bar_ro_mask))) {
+ PT_WARN(d, "Guest attempt to set Base Address "
+ "over the 64KB. (offset: 0x%02x,"
+ " addr: 0x%08x, size: 0x%08x)\n",
+ reg->offset, new_addr, r_size);
+ }
+ /* just remove mapping */
+ r->addr = PCI_BAR_UNMAPPED;
+ goto exit;
+ }
+ break;
+ case PT_BAR_FLAG_UPPER:
+ if (cfg_entry->data) {
+ if (cfg_entry->data != (PT_BAR_ALLF & ~bar_ro_mask)) {
+ PT_WARN(d, "Guest attempt to set high MMIO Base Address. "
+ "Ignore mapping. "
+ "(offset: 0x%02x, high address: 0x%08x)\n",
+ reg->offset, cfg_entry->data);
+ }
+ /* clear lower address */
+ d->io_regions[index-1].addr = -1;
+ } else {
+ /* find lower 32bit BAR */
+ prev_offset = (reg->offset - 4);
+ reg_grp_entry = pt_find_reg_grp(s, prev_offset);
+ if (reg_grp_entry) {
+ reg_entry = pt_find_reg(reg_grp_entry, prev_offset);
+ if (reg_entry) {
+ /* restore lower address */
+ d->io_regions[index-1].addr = reg_entry->data;
+ } else {
+ return -1;
+ }
+ } else {
+ return -1;
+ }
+ }
+
+ /* never mapping the 'empty' upper region,
+ * because we'll do it enough for the lower region.
+ */
+ r->addr = -1;
+ goto exit;
+ default:
+ break;
+ }
+
+ /* update the corresponding virtual region address */
+ /*
+ * When guest code tries to get block size of mmio, it will write all "1"s
+ * into pci bar register. In this case, cfg_entry->data == writable_mask.
+ * Especially for devices with large mmio, the value of writable_mask
+ * is likely to be a guest physical address that has been mapped to ram
+ * rather than mmio. Remapping this value to mmio should be prevented.
+ */
+
+ if (cfg_entry->data != writable_mask) {
+ r->addr = cfg_entry->data;
+ }
+
+exit:
+ /* create value for writing to I/O device register */
+ throughable_mask = ~bar_emu_mask & valid_mask;
+ *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
+
+ /* After BAR reg update, we need to remap BAR */
+ reg_grp_entry = pt_find_reg_grp(s, PCI_COMMAND);
+ if (reg_grp_entry) {
+ reg_entry = pt_find_reg(reg_grp_entry, PCI_COMMAND);
+ if (reg_entry) {
+ pt_bar_mapping_one(s, index, reg_entry->data & PCI_COMMAND_IO,
+ reg_entry->data & PCI_COMMAND_MEMORY);
+ }
+ }
+
+ return 0;
+}
+static int pt_bar_reg_restore(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint32_t real_offset, uint32_t dev_value,
+ uint32_t *value)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ uint32_t bar_emu_mask = 0;
+ int index = 0;
+
+ /* get BAR index */
+ index = pt_bar_offset_to_index(reg->offset);
+ if (index < 0) {
+ PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
+ return -1;
+ }
+
+ /* use value from kernel sysfs */
+ if (s->bases[index].bar_flag == PT_BAR_FLAG_UPPER) {
+ *value = s->real_device->io_regions[index - 1].base_addr >> 32;
+ } else {
+ *value = base_address_with_flags(&s->real_device->io_regions[index]);
+ }
+
+ /* set emulate mask depend on BAR flag */
+ switch (s->bases[index].bar_flag) {
+ case PT_BAR_FLAG_MEM:
+ bar_emu_mask = PT_BAR_MEM_EMU_MASK;
+ break;
+ case PT_BAR_FLAG_IO:
+ bar_emu_mask = PT_BAR_IO_EMU_MASK;
+ break;
+ case PT_BAR_FLAG_UPPER:
+ bar_emu_mask = PT_BAR_ALLF;
+ break;
+ default:
+ break;
+ }
+
+ /* create value for restoring to I/O device register */
+ *value = PT_MERGE_VALUE(*value, dev_value, bar_emu_mask);
+
+ return 0;
+}
+
+/* write Exp ROM BAR */
+static int pt_exp_rom_bar_reg_write(XenPCIPassthroughState *s,
+ XenPTReg *cfg_entry, uint32_t *value,
+ uint32_t dev_value, uint32_t valid_mask)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ XenPTRegGroup *reg_grp_entry = NULL;
+ XenPTReg *reg_entry = NULL;
+ XenPTRegion *base = NULL;
+ PCIDevice *d = (PCIDevice *)&s->dev;
+ PCIIORegion *r;
+ uint32_t writable_mask = 0;
+ uint32_t throughable_mask = 0;
+ pcibus_t r_size = 0;
+ uint32_t bar_emu_mask = 0;
+ uint32_t bar_ro_mask = 0;
+
+ r = &d->io_regions[PCI_ROM_SLOT];
+ r_size = r->size;
+ base = &s->bases[PCI_ROM_SLOT];
+ /* align memory type resource size */
+ pt_get_emul_size(base->bar_flag, r_size);
+
+ /* set emulate mask and read-only mask */
+ bar_emu_mask = reg->emu_mask;
+ bar_ro_mask = (reg->ro_mask | (r_size - 1)) & ~PCI_ROM_ADDRESS_ENABLE;
+
+ /* modify emulate register */
+ writable_mask = ~bar_ro_mask & valid_mask;
+ cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
+
+ /* update the corresponding virtual region address */
+ /*
+ * When guest code tries to get block size of mmio, it will write all "1"s
+ * into pci bar register. In this case, cfg_entry->data == writable_mask.
+ * Especially for devices with large mmio, the value of writable_mask
+ * is likely to be a guest physical address that has been mapped to ram
+ * rather than mmio. Remapping this value to mmio should be prevented.
+ */
+
+ if (cfg_entry->data != writable_mask) {
+ r->addr = cfg_entry->data;
+ }
+
+ /* create value for writing to I/O device register */
+ throughable_mask = ~bar_emu_mask & valid_mask;
+ *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
+
+ /* After BAR reg update, we need to remap BAR*/
+ reg_grp_entry = pt_find_reg_grp(s, PCI_COMMAND);
+ if (reg_grp_entry) {
+ reg_entry = pt_find_reg(reg_grp_entry, PCI_COMMAND);
+ if (reg_entry) {
+ pt_bar_mapping_one(s, PCI_ROM_SLOT,
+ reg_entry->data & PCI_COMMAND_IO,
+ reg_entry->data & PCI_COMMAND_MEMORY);
+ }
+ }
+
+ return 0;
+}
+/* restore ROM BAR */
+static int pt_exp_rom_bar_reg_restore(XenPCIPassthroughState *s,
+ XenPTReg *cfg_entry,
+ uint32_t real_offset,
+ uint32_t dev_value, uint32_t *value)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ uint32_t v;
+
+ if (host_pci_get_long(s->real_device, PCI_ROM_ADDRESS, &v)) {
+ return -1;
+ }
+ /* use value from kernel sysfs */
+ *value = PT_MERGE_VALUE(v, dev_value, reg->emu_mask);
+ return 0;
+}
+
+/* Header Type0 reg static infomation table */
+static XenPTRegInfo pt_emu_reg_header0_tbl[] = {
+ /* Vendor ID reg */
+ {
+ .offset = PCI_VENDOR_ID,
+ .size = 2,
+ .init_val = 0x0000,
+ .ro_mask = 0xFFFF,
+ .emu_mask = 0xFFFF,
+ .init = pt_vendor_reg_init,
+ .u.w.read = pt_word_reg_read,
+ .u.w.write = pt_word_reg_write,
+ .u.w.restore = NULL,
+ },
+ /* Device ID reg */
+ {
+ .offset = PCI_DEVICE_ID,
+ .size = 2,
+ .init_val = 0x0000,
+ .ro_mask = 0xFFFF,
+ .emu_mask = 0xFFFF,
+ .init = pt_device_reg_init,
+ .u.w.read = pt_word_reg_read,
+ .u.w.write = pt_word_reg_write,
+ .u.w.restore = NULL,
+ },
+ /* Command reg */
+ {
+ .offset = PCI_COMMAND,
+ .size = 2,
+ .init_val = 0x0000,
+ .ro_mask = 0xF880,
+ .emu_mask = 0x0740,
+ .init = pt_common_reg_init,
+ .u.w.read = pt_cmd_reg_read,
+ .u.w.write = pt_cmd_reg_write,
+ .u.w.restore = pt_cmd_reg_restore,
+ },
+ /* Capabilities Pointer reg */
+ {
+ .offset = PCI_CAPABILITY_LIST,
+ .size = 1,
+ .init_val = 0x00,
+ .ro_mask = 0xFF,
+ .emu_mask = 0xFF,
+ .init = pt_ptr_reg_init,
+ .u.b.read = pt_byte_reg_read,
+ .u.b.write = pt_byte_reg_write,
+ .u.b.restore = NULL,
+ },
+ /* Status reg */
+ /* use emulated Cap Ptr value to initialize,
+ * so need to be declared after Cap Ptr reg
+ */
+ {
+ .offset = PCI_STATUS,
+ .size = 2,
+ .init_val = 0x0000,
+ .ro_mask = 0x06FF,
+ .emu_mask = 0x0010,
+ .init = pt_status_reg_init,
+ .u.w.read = pt_word_reg_read,
+ .u.w.write = pt_word_reg_write,
+ .u.w.restore = NULL,
+ },
+ /* Cache Line Size reg */
+ {
+ .offset = PCI_CACHE_LINE_SIZE,
+ .size = 1,
+ .init_val = 0x00,
+ .ro_mask = 0x00,
+ .emu_mask = 0xFF,
+ .init = pt_common_reg_init,
+ .u.b.read = pt_byte_reg_read,
+ .u.b.write = pt_byte_reg_write,
+ .u.b.restore = pt_byte_reg_restore,
+ },
+ /* Latency Timer reg */
+ {
+ .offset = PCI_LATENCY_TIMER,
+ .size = 1,
+ .init_val = 0x00,
+ .ro_mask = 0x00,
+ .emu_mask = 0xFF,
+ .init = pt_common_reg_init,
+ .u.b.read = pt_byte_reg_read,
+ .u.b.write = pt_byte_reg_write,
+ .u.b.restore = pt_byte_reg_restore,
+ },
+ /* Header Type reg */
+ {
+ .offset = PCI_HEADER_TYPE,
+ .size = 1,
+ .init_val = 0x00,
+ .ro_mask = 0xFF,
+ .emu_mask = 0x00,
+ .init = pt_header_type_reg_init,
+ .u.b.read = pt_byte_reg_read,
+ .u.b.write = pt_byte_reg_write,
+ .u.b.restore = NULL,
+ },
+ /* Interrupt Line reg */
+ {
+ .offset = PCI_INTERRUPT_LINE,
+ .size = 1,
+ .init_val = 0x00,
+ .ro_mask = 0x00,
+ .emu_mask = 0xFF,
+ .init = pt_common_reg_init,
+ .u.b.read = pt_byte_reg_read,
+ .u.b.write = pt_byte_reg_write,
+ .u.b.restore = NULL,
+ },
+ /* Interrupt Pin reg */
+ {
+ .offset = PCI_INTERRUPT_PIN,
+ .size = 1,
+ .init_val = 0x00,
+ .ro_mask = 0xFF,
+ .emu_mask = 0xFF,
+ .init = pt_irqpin_reg_init,
+ .u.b.read = pt_byte_reg_read,
+ .u.b.write = pt_byte_reg_write,
+ .u.b.restore = NULL,
+ },
+ /* BAR 0 reg */
+ /* mask of BAR need to be decided later, depends on IO/MEM type */
+ {
+ .offset = PCI_BASE_ADDRESS_0,
+ .size = 4,
+ .init_val = 0x00000000,
+ .init = pt_bar_reg_init,
+ .u.dw.read = pt_bar_reg_read,
+ .u.dw.write = pt_bar_reg_write,
+ .u.dw.restore = pt_bar_reg_restore,
+ },
+ /* BAR 1 reg */
+ {
+ .offset = PCI_BASE_ADDRESS_1,
+ .size = 4,
+ .init_val = 0x00000000,
+ .init = pt_bar_reg_init,
+ .u.dw.read = pt_bar_reg_read,
+ .u.dw.write = pt_bar_reg_write,
+ .u.dw.restore = pt_bar_reg_restore,
+ },
+ /* BAR 2 reg */
+ {
+ .offset = PCI_BASE_ADDRESS_2,
+ .size = 4,
+ .init_val = 0x00000000,
+ .init = pt_bar_reg_init,
+ .u.dw.read = pt_bar_reg_read,
+ .u.dw.write = pt_bar_reg_write,
+ .u.dw.restore = pt_bar_reg_restore,
+ },
+ /* BAR 3 reg */
+ {
+ .offset = PCI_BASE_ADDRESS_3,
+ .size = 4,
+ .init_val = 0x00000000,
+ .init = pt_bar_reg_init,
+ .u.dw.read = pt_bar_reg_read,
+ .u.dw.write = pt_bar_reg_write,
+ .u.dw.restore = pt_bar_reg_restore,
+ },
+ /* BAR 4 reg */
+ {
+ .offset = PCI_BASE_ADDRESS_4,
+ .size = 4,
+ .init_val = 0x00000000,
+ .init = pt_bar_reg_init,
+ .u.dw.read = pt_bar_reg_read,
+ .u.dw.write = pt_bar_reg_write,
+ .u.dw.restore = pt_bar_reg_restore,
+ },
+ /* BAR 5 reg */
+ {
+ .offset = PCI_BASE_ADDRESS_5,
+ .size = 4,
+ .init_val = 0x00000000,
+ .init = pt_bar_reg_init,
+ .u.dw.read = pt_bar_reg_read,
+ .u.dw.write = pt_bar_reg_write,
+ .u.dw.restore = pt_bar_reg_restore,
+ },
+ /* Expansion ROM BAR reg */
+ {
+ .offset = PCI_ROM_ADDRESS,
+ .size = 4,
+ .init_val = 0x00000000,
+ .ro_mask = 0x000007FE,
+ .emu_mask = 0xFFFFF800,
+ .init = pt_bar_reg_init,
+ .u.dw.read = pt_long_reg_read,
+ .u.dw.write = pt_exp_rom_bar_reg_write,
+ .u.dw.restore = pt_exp_rom_bar_reg_restore,
+ },
+ {
+ .size = 0,
+ },
+};
+
+
+/*********************************
+ * Vital Product Data Capability
+ */
+
+/* Vital Product Data Capability Structure reg static infomation table */
+static XenPTRegInfo pt_emu_reg_vpd_tbl[] = {
+ {
+ .offset = PCI_CAP_LIST_NEXT,
+ .size = 1,
+ .init_val = 0x00,
+ .ro_mask = 0xFF,
+ .emu_mask = 0xFF,
+ .init = pt_ptr_reg_init,
+ .u.b.read = pt_byte_reg_read,
+ .u.b.write = pt_byte_reg_write,
+ .u.b.restore = NULL,
+ },
+ {
+ .size = 0,
+ },
+};
+
+
+/**************************************
+ * Vendor Specific Capability
+ */
+
+/* Vendor Specific Capability Structure reg static infomation table */
+static XenPTRegInfo pt_emu_reg_vendor_tbl[] = {
+ {
+ .offset = PCI_CAP_LIST_NEXT,
+ .size = 1,
+ .init_val = 0x00,
+ .ro_mask = 0xFF,
+ .emu_mask = 0xFF,
+ .init = pt_ptr_reg_init,
+ .u.b.read = pt_byte_reg_read,
+ .u.b.write = pt_byte_reg_write,
+ .u.b.restore = NULL,
+ },
+ {
+ .size = 0,
+ },
+};
+
+
+/*****************************
+ * PCI Express Capability
+ */
+
+/* initialize Link Control register */
+static int pt_linkctrl_reg_init(XenPCIPassthroughState *s,
+ XenPTRegInfo *reg, uint32_t real_offset,
+ uint32_t *data)
+{
+ uint8_t cap_ver = 0;
+ uint8_t dev_type = 0;
+
+ cap_ver = pci_get_byte(s->dev.config + real_offset - reg->offset
+ + PCI_EXP_FLAGS)
+ & PCI_EXP_FLAGS_VERS;
+ dev_type = (pci_get_byte(s->dev.config + real_offset - reg->offset
+ + PCI_EXP_FLAGS)
+ & PCI_EXP_FLAGS_TYPE) >> 4;
+
+ /* no need to initialize in case of Root Complex Integrated Endpoint
+ * with cap_ver 1.x
+ */
+ if ((dev_type == PCI_EXP_TYPE_RC_END) && (cap_ver == 1)) {
+ *data = PT_INVALID_REG;
+ }
+
+ *data = reg->init_val;
+ return 0;
+}
+/* initialize Device Control 2 register */
+static int pt_devctrl2_reg_init(XenPCIPassthroughState *s,
+ XenPTRegInfo *reg, uint32_t real_offset,
+ uint32_t *data)
+{
+ uint8_t cap_ver = 0;
+
+ cap_ver = pci_get_byte(s->dev.config + real_offset - reg->offset
+ + PCI_EXP_FLAGS)
+ & PCI_EXP_FLAGS_VERS;
+
+ /* no need to initialize in case of cap_ver 1.x */
+ if (cap_ver == 1) {
+ *data = PT_INVALID_REG;
+ }
+
+ *data = reg->init_val;
+ return 0;
+}
+/* initialize Link Control 2 register */
+static int pt_linkctrl2_reg_init(XenPCIPassthroughState *s,
+ XenPTRegInfo *reg, uint32_t real_offset,
+ uint32_t *data)
+{
+ uint32_t reg_field = 0;
+ uint8_t cap_ver = 0;
+
+ cap_ver = pci_get_byte(s->dev.config + real_offset - reg->offset
+ + PCI_EXP_FLAGS)
+ & PCI_EXP_FLAGS_VERS;
+
+ /* no need to initialize in case of cap_ver 1.x */
+ if (cap_ver == 1) {
+ reg_field = PT_INVALID_REG;
+ } else {
+ /* set Supported Link Speed */
+ uint8_t lnkcap = pci_get_byte(s->dev.config + real_offset - reg->offset
+ + PCI_EXP_LNKCAP);
+ reg_field |= PCI_EXP_LNKCAP_SLS & lnkcap;
+ }
+
+ *data = reg_field;
+ return 0;
+}
+
+/* PCI Express Capability Structure reg static infomation table */
+static XenPTRegInfo pt_emu_reg_pcie_tbl[] = {
+ /* Next Pointer reg */
+ {
+ .offset = PCI_CAP_LIST_NEXT,
+ .size = 1,
+ .init_val = 0x00,
+ .ro_mask = 0xFF,
+ .emu_mask = 0xFF,
+ .init = pt_ptr_reg_init,
+ .u.b.read = pt_byte_reg_read,
+ .u.b.write = pt_byte_reg_write,
+ .u.b.restore = NULL,
+ },
+ /* Device Capabilities reg */
+ {
+ .offset = PCI_EXP_DEVCAP,
+ .size = 4,
+ .init_val = 0x00000000,
+ .ro_mask = 0x1FFCFFFF,
+ .emu_mask = 0x10000000,
+ .init = pt_common_reg_init,
+ .u.dw.read = pt_long_reg_read,
+ .u.dw.write = pt_long_reg_write,
+ .u.dw.restore = NULL,
+ },
+ /* Device Control reg */
+ {
+ .offset = PCI_EXP_DEVCTL,
+ .size = 2,
+ .init_val = 0x2810,
+ .ro_mask = 0x8400,
+ .emu_mask = 0xFFFF,
+ .init = pt_common_reg_init,
+ .u.w.read = pt_word_reg_read,
+ .u.w.write = pt_word_reg_write,
+ .u.w.restore = pt_word_reg_restore,
+ },
+ /* Link Control reg */
+ {
+ .offset = PCI_EXP_LNKCTL,
+ .size = 2,
+ .init_val = 0x0000,
+ .ro_mask = 0xFC34,
+ .emu_mask = 0xFFFF,
+ .init = pt_linkctrl_reg_init,
+ .u.w.read = pt_word_reg_read,
+ .u.w.write = pt_word_reg_write,
+ .u.w.restore = pt_word_reg_restore,
+ },
+ /* Device Control 2 reg */
+ {
+ .offset = 0x28,
+ .size = 2,
+ .init_val = 0x0000,
+ .ro_mask = 0xFFE0,
+ .emu_mask = 0xFFFF,
+ .init = pt_devctrl2_reg_init,
+ .u.w.read = pt_word_reg_read,
+ .u.w.write = pt_word_reg_write,
+ .u.w.restore = pt_word_reg_restore,
+ },
+ /* Link Control 2 reg */
+ {
+ .offset = 0x30,
+ .size = 2,
+ .init_val = 0x0000,
+ .ro_mask = 0xE040,
+ .emu_mask = 0xFFFF,
+ .init = pt_linkctrl2_reg_init,
+ .u.w.read = pt_word_reg_read,
+ .u.w.write = pt_word_reg_write,
+ .u.w.restore = pt_word_reg_restore,
+ },
+ {
+ .size = 0,
+ },
+};
+
+
+/*********************************
+ * Power Management Capability
+ */
+
+/* initialize Power Management Capabilities register */
+static int pt_pmc_reg_init(XenPCIPassthroughState *s,
+ XenPTRegInfo *reg, uint32_t real_offset,
+ uint32_t *data)
+{
+ PCIDevice *d = &s->dev;
+
+ if (s->power_mgmt) {
+ /* set Power Management Capabilities register */
+ s->pm_state->pmc_field = pci_get_word(d->config + real_offset);
+ }
+
+ *data = reg->init_val;
+ return 0;
+}
+/* initialize PCI Power Management Control/Status register */
+static int pt_pmcsr_reg_init(XenPCIPassthroughState *s,
+ XenPTRegInfo *reg, uint32_t real_offset,
+ uint32_t *data)
+{
+ PCIDevice *d = &s->dev;
+ uint16_t cap_ver = 0;
+ uint16_t v = 0;
+
+ if (!s->power_mgmt) {
+ *data = reg->init_val;
+ return 0;
+ }
+
+ /* check PCI Power Management support version */
+ cap_ver = s->pm_state->pmc_field & PCI_PM_CAP_VER_MASK;
+
+ if (cap_ver > 2) {
+ /* set No Soft Reset */
+ s->pm_state->no_soft_reset =
+ pci_get_byte(d->config + real_offset) & PCI_PM_CTRL_NO_SOFT_RESET;
+ }
+
+ host_pci_get_word(s->real_device, real_offset, &v);
+ /* wake up real physical device */
+ switch (v & PCI_PM_CTRL_STATE_MASK) {
+ case 0:
+ break;
+ case 1:
+ PT_LOG(d, "Power state transition D1 -> D0active\n");
+ host_pci_set_word(s->real_device, real_offset, 0);
+ break;
+ case 2:
+ PT_LOG(d, "Power state transition D2 -> D0active\n");
+ host_pci_set_word(s->real_device, real_offset, 0);
+ usleep(200);
+ break;
+ case 3:
+ PT_LOG(d, "Power state transition D3hot -> D0active\n");
+ host_pci_set_word(s->real_device, real_offset, 0);
+ usleep(10 * 1000);
+ if (pt_init_pci_config(s)) {
+ return -1;
+ }
+ break;
+ }
+
+ *data = reg->init_val;
+ return 0;
+}
+/* read Power Management Control/Status register */
+static int pt_pmcsr_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint16_t *value, uint16_t valid_mask)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ uint16_t valid_emu_mask = reg->emu_mask;
+
+ if (!s->power_mgmt) {
+ valid_emu_mask |= PCI_PM_CTRL_STATE_MASK | PCI_PM_CTRL_NO_SOFT_RESET;
+ }
+
+ valid_emu_mask = valid_emu_mask & valid_mask;
+ *value = PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
+
+ return 0;
+}
+/* reset Interrupt and I/O resource */
+static void pt_reset_interrupt_and_io_mapping(XenPCIPassthroughState *s)
+{
+ PCIDevice *d = &s->dev;
+ PCIIORegion *r;
+ int i = 0;
+ uint8_t e_device = 0;
+ uint8_t e_intx = 0;
+
+ /* unbind INTx */
+ e_device = PCI_SLOT(s->dev.devfn);
+ e_intx = pci_intx(s);
+
+ if (s->machine_irq) {
+ if (xc_domain_unbind_pt_irq(xen_xc, xen_domid, s->machine_irq,
+ PT_IRQ_TYPE_PCI, 0, e_device, e_intx, 0)) {
+ PT_ERR(d, "Unbinding of interrupt failed!\n");
+ }
+ }
+
+ /* clear all virtual region address */
+ for (i = 0; i < PCI_NUM_REGIONS; i++) {
+ r = &d->io_regions[i];
+ r->addr = -1;
+ }
+
+ /* unmapping BAR */
+ pt_bar_mapping(s, 0, 0);
+}
+/* check power state transition */
+static int check_power_state(XenPCIPassthroughState *s)
+{
+ XenPTPM *pm_state = s->pm_state;
+ PCIDevice *d = &s->dev;
+ uint16_t read_val = 0;
+ uint16_t cur_state = 0;
+
+ /* get current power state */
+ if (host_pci_get_word(s->real_device, pm_state->pm_base + PCI_PM_CTRL,
+ &read_val)) {
+ return -1;
+ }
+ cur_state = read_val & PCI_PM_CTRL_STATE_MASK;
+
+ if (pm_state->req_state != cur_state) {
+ PT_ERR(d, "Failed to change power state. "
+ "(requested state: %d, current state: %d)\n",
+ pm_state->req_state, cur_state);
+ return -1;
+ }
+ return 0;
+}
+/* write Power Management Control/Status register */
+static void pt_from_d3hot_to_d0_with_reset(void *opaque)
+{
+ XenPCIPassthroughState *s = opaque;
+ XenPTPM *pm_state = s->pm_state;
+ int ret = 0;
+
+ /* check power state */
+ ret = check_power_state(s);
+
+ if (ret < 0) {
+ goto out;
+ }
+
+ pt_init_pci_config(s);
+
+out:
+ /* power state transition flags off */
+ pm_state->flags &= ~PT_FLAG_TRANSITING;
+
+ qemu_free_timer(pm_state->pm_timer);
+ pm_state->pm_timer = NULL;
+}
+static void pt_default_power_transition(void *opaque)
+{
+ XenPCIPassthroughState *ptdev = opaque;
+ XenPTPM *pm_state = ptdev->pm_state;
+
+ /* check power state */
+ check_power_state(ptdev);
+
+ /* power state transition flags off */
+ pm_state->flags &= ~PT_FLAG_TRANSITING;
+
+ qemu_free_timer(pm_state->pm_timer);
+ pm_state->pm_timer = NULL;
+}
+static int pt_pmcsr_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint16_t *value, uint16_t dev_value,
+ uint16_t valid_mask)
+{
+ XenPTRegInfo *reg = cfg_entry->reg;
+ PCIDevice *d = &s->dev;
+ uint16_t emu_mask = reg->emu_mask;
+ uint16_t writable_mask = 0;
+ uint16_t throughable_mask = 0;
+ XenPTPM *pm_state = s->pm_state;
+
+ if (!s->power_mgmt) {
+ emu_mask |= PCI_PM_CTRL_STATE_MASK | PCI_PM_CTRL_NO_SOFT_RESET;
+ }
+
+ /* modify emulate register */
+ writable_mask = emu_mask & ~reg->ro_mask & valid_mask;
+ cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
+
+ /* create value for writing to I/O device register */
+ throughable_mask = ~emu_mask & valid_mask;
+ *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
+
+ if (!s->power_mgmt) {
+ return 0;
+ }
+
+ /* set I/O device power state */
+ pm_state->cur_state = dev_value & PCI_PM_CTRL_STATE_MASK;
+
+ /* set Guest requested PowerState */
+ pm_state->req_state = *value & PCI_PM_CTRL_STATE_MASK;
+
+ /* check power state transition or not */
+ if (pm_state->cur_state == pm_state->req_state) {
+ /* not power state transition */
+ return 0;
+ }
+
+ /* check enable power state transition */
+ if ((pm_state->req_state != 0) &&
+ (pm_state->cur_state > pm_state->req_state)) {
+ PT_ERR(d, "Invalid power transition. "
+ "(requested state: %d, current state: %d)\n",
+ pm_state->req_state, pm_state->cur_state);
+
+ return 0;
+ }
+
+ /* check if this device supports the requested power state */
+ if (((pm_state->req_state == 1) && !(pm_state->pmc_field & PCI_PM_CAP_D1))
+ || ((pm_state->req_state == 2) &&
+ !(pm_state->pmc_field & PCI_PM_CAP_D2))) {
+ PT_ERR(d, "Invalid power transition. "
+ "(requested state: %d, current state: %d)\n",
+ pm_state->req_state, pm_state->cur_state);
+
+ return 0;
+ }
+
+ /* in case of transition related to D3hot, it's necessary to wait 10 ms.
+ * But because writing to register will be performed later on actually,
+ * don't start QEMUTimer right now, just alloc and init QEMUTimer here.
+ */
+ if ((pm_state->cur_state == 3) || (pm_state->req_state == 3)) {
+ if (pm_state->req_state == 0) {
+ /* alloc and init QEMUTimer */
+ if (!pm_state->no_soft_reset) {
+ pm_state->pm_timer = qemu_new_timer_ms(rt_clock,
+ pt_from_d3hot_to_d0_with_reset, s);
+
+ /* reset Interrupt and I/O resource mapping */
+ pt_reset_interrupt_and_io_mapping(s);
+ } else {
+ pm_state->pm_timer = qemu_new_timer_ms(rt_clock,
+ pt_default_power_transition, s);
+ }
+ } else {
+ /* alloc and init QEMUTimer */
+ pm_state->pm_timer = qemu_new_timer_ms(rt_clock,
+ pt_default_power_transition, s);
+ }
+
+ /* set power state transition delay */
+ pm_state->pm_delay = 10;
+
+ /* power state transition flags on */
+ pm_state->flags |= PT_FLAG_TRANSITING;
+ }
+ /* in case of transition related to D0, D1 and D2,
+ * no need to use QEMUTimer.
+ * So, we perfom writing to register here and then read it back.
+ */
+ else {
+ /* write power state to I/O device register */
+ host_pci_set_word(s->real_device, pm_state->pm_base + PCI_PM_CTRL,
+ *value);
+
+ /* in case of transition related to D2,
+ * it's necessary to wait 200 usec.
+ * But because QEMUTimer do not support microsec unit right now,
+ * so we do wait ourself here.
+ */
+ if ((pm_state->cur_state == 2) || (pm_state->req_state == 2)) {
+ usleep(200);
+ }
+
+ /* check power state */
+ check_power_state(s);
+
+ /* recreate value for writing to I/O device register */
+ if (host_pci_get_word(s->real_device, pm_state->pm_base + PCI_PM_CTRL,
+ value)) {
+ return -1;
+ }
+ }
+
+ return 0;
+}
+
+/* restore Power Management Control/Status register */
+static int pt_pmcsr_reg_restore(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
+ uint32_t real_offset, uint16_t dev_value,
+ uint16_t *value)
+{
+ /* create value for restoring to I/O device register
+ * No need to restore, just clear PME Enable and PME Status bit
+ * Note: register type of PME Status bit is RW1C, so clear by writing 1b
+ */
+ *value = (dev_value & ~PCI_PM_CTRL_PME_ENABLE) | PCI_PM_CTRL_PME_STATUS;
+
+ return 0;
+}
+
+
+/* Power Management Capability reg static infomation table */
+static XenPTRegInfo pt_emu_reg_pm_tbl[] = {
+ /* Next Pointer reg */
+ {
+ .offset = PCI_CAP_LIST_NEXT,
+ .size = 1,
+ .init_val = 0x00,
+ .ro_mask = 0xFF,
+ .emu_mask = 0xFF,
+ .init = pt_ptr_reg_init,
+ .u.b.read = pt_byte_reg_read,
+ .u.b.write = pt_byte_reg_write,
+ .u.b.restore = NULL,
+ },
+ /* Power Management Capabilities reg */
+ {
+ .offset = PCI_CAP_FLAGS,
+ .size = 2,
+ .init_val = 0x0000,
+ .ro_mask = 0xFFFF,
+ .emu_mask = 0xF9C8,
+ .init = pt_pmc_reg_init,
+ .u.w.read = pt_word_reg_read,
+ .u.w.write = pt_word_reg_write,
+ .u.w.restore = NULL,
+ },
+ /* PCI Power Management Control/Status reg */
+ {
+ .offset = PCI_PM_CTRL,
+ .size = 2,
+ .init_val = 0x0008,
+ .ro_mask = 0xE1FC,
+ .emu_mask = 0x8100,
+ .init = pt_pmcsr_reg_init,
+ .u.w.read = pt_pmcsr_reg_read,
+ .u.w.write = pt_pmcsr_reg_write,
+ .u.w.restore = pt_pmcsr_reg_restore,
+ },
+ {
+ .size = 0,
+ },
+};
+
+
+/****************************
+ * Capabilities
+ */
+
+/* AER register operations */
+
+static void aer_save_one_register(XenPCIPassthroughState *s, int offset)
+{
+ PCIDevice *d = &s->dev;
+ uint32_t aer_base = s->pm_state->aer_base;
+ uint32_t val = 0;
+
+ if (host_pci_get_long(s->real_device, aer_base + offset, &val)) {
+ return;
+ }
+ pci_set_long(d->config + aer_base + offset, val);
+}
+static void pt_aer_reg_save(XenPCIPassthroughState *s)
+{
+ /* after reset, following register values should be restored.
+ * So, save them.
+ */
+ aer_save_one_register(s, PCI_ERR_UNCOR_MASK);
+ aer_save_one_register(s, PCI_ERR_UNCOR_SEVER);
+ aer_save_one_register(s, PCI_ERR_COR_MASK);
+ aer_save_one_register(s, PCI_ERR_CAP);
+}
+static void aer_restore_one_register(XenPCIPassthroughState *s, int offset)
+{
+ PCIDevice *d = &s->dev;
+ uint32_t aer_base = s->pm_state->aer_base;
+ uint32_t config = 0;
+
+ config = pci_get_long(d->config + aer_base + offset);
+ host_pci_set_long(s->real_device, aer_base + offset, config);
+}
+static void pt_aer_reg_restore(XenPCIPassthroughState *s)
+{
+ /* the following registers should be reconfigured to correct values
+ * after reset. restore them.
+ * other registers should not be reconfigured after reset
+ * if there is no reason
+ */
+ aer_restore_one_register(s, PCI_ERR_UNCOR_MASK);
+ aer_restore_one_register(s, PCI_ERR_UNCOR_SEVER);
+ aer_restore_one_register(s, PCI_ERR_COR_MASK);
+ aer_restore_one_register(s, PCI_ERR_CAP);
+}
+
+/* capability structure register group size functions */
+
+static int pt_reg_grp_size_init(XenPCIPassthroughState *s,
+ const XenPTRegGroupInfo *grp_reg,
+ uint32_t base_offset, uint8_t *size)
+{
+ *size = grp_reg->grp_size;
+ return 0;
+}
+/* get Power Management Capability Structure register group size */
+static int pt_pm_size_init(XenPCIPassthroughState *s,
+ const XenPTRegGroupInfo *grp_reg,
+ uint32_t base_offset, uint8_t *size)
+{
+ *size = grp_reg->grp_size;
+
+ if (!s->power_mgmt) {
+ return 0;
+ }
+
+ s->pm_state = g_new0(XenPTPM, 1);
+
+ /* set Power Management Capability base offset */
+ s->pm_state->pm_base = base_offset;
+
+ /* find AER register and set AER Capability base offset */
+ s->pm_state->aer_base = host_pci_find_ext_cap_offset(s->real_device,
+ PCI_EXT_CAP_ID_ERR);
+
+ /* save AER register */
+ if (s->pm_state->aer_base) {
+ pt_aer_reg_save(s);
+ }
+
+ return 0;
+}
+/* get Vendor Specific Capability Structure register group size */
+static int pt_vendor_size_init(XenPCIPassthroughState *s,
+ const XenPTRegGroupInfo *grp_reg,
+ uint32_t base_offset, uint8_t *size)
+{
+ *size = pci_get_byte(s->dev.config + base_offset + 0x02);
+ return 0;
+}
+/* get PCI Express Capability Structure register group size */
+static int pt_pcie_size_init(XenPCIPassthroughState *s,
+ const XenPTRegGroupInfo *grp_reg,
+ uint32_t base_offset, uint8_t *size)
+{
+ PCIDevice *d = &s->dev;
+ uint16_t exp_flag = 0;
+ uint16_t type = 0;
+ uint16_t version = 0;
+ uint8_t pcie_size = 0;
+
+ exp_flag = pci_get_word(d->config + base_offset + PCI_EXP_FLAGS);
+ type = (exp_flag & PCI_EXP_FLAGS_TYPE) >> 4;
+ version = exp_flag & PCI_EXP_FLAGS_VERS;
+
+ /* calculate size depend on capability version and device/port type */
+ /* in case of PCI Express Base Specification Rev 1.x */
+ if (version == 1) {
+ /* The PCI Express Capabilities, Device Capabilities, and Device
+ * Status/Control registers are required for all PCI Express devices.
+ * The Link Capabilities and Link Status/Control are required for all
+ * Endpoints that are not Root Complex Integrated Endpoints. Endpoints
+ * are not required to implement registers other than those listed
+ * above and terminate the capability structure.
+ */
+ switch (type) {
+ case PCI_EXP_TYPE_ENDPOINT:
+ case PCI_EXP_TYPE_LEG_END:
+ pcie_size = 0x14;
+ break;
+ case PCI_EXP_TYPE_RC_END:
+ /* has no link */
+ pcie_size = 0x0C;
+ break;
+ /* only EndPoint passthrough is supported */
+ case PCI_EXP_TYPE_ROOT_PORT:
+ case PCI_EXP_TYPE_UPSTREAM:
+ case PCI_EXP_TYPE_DOWNSTREAM:
+ case PCI_EXP_TYPE_PCI_BRIDGE:
+ case PCI_EXP_TYPE_PCIE_BRIDGE:
+ case PCI_EXP_TYPE_RC_EC:
+ default:
+ PT_ERR(d, "Internal error: Unsupported device/port type (%d).\n",
+ type);
+ return -1;
+ }
+ }
+ /* in case of PCI Express Base Specification Rev 2.0 */
+ else if (version == 2) {
+ switch (type) {
+ case PCI_EXP_TYPE_ENDPOINT:
+ case PCI_EXP_TYPE_LEG_END:
+ case PCI_EXP_TYPE_RC_END:
+ /* For Functions that do not implement the registers,
+ * these spaces must be hardwired to 0b.
+ */
+ pcie_size = 0x3C;
+ break;
+ /* only EndPoint passthrough is supported */
+ case PCI_EXP_TYPE_ROOT_PORT:
+ case PCI_EXP_TYPE_UPSTREAM:
+ case PCI_EXP_TYPE_DOWNSTREAM:
+ case PCI_EXP_TYPE_PCI_BRIDGE:
+ case PCI_EXP_TYPE_PCIE_BRIDGE:
+ case PCI_EXP_TYPE_RC_EC:
+ default:
+ PT_ERR(d, "Internal error: Unsupported device/port type (%d).\n",
+ type);
+ return -1;
+ }
+ } else {
+ PT_ERR(d, "Internal error: Unsupported capability version (%d).\n",
+ version);
+ return -1;
+ }
+
+ *size = pcie_size;
+ return 0;
+}
+
+static const XenPTRegGroupInfo pt_emu_reg_grp_tbl[] = {
+ /* Header Type0 reg group */
+ {
+ .grp_id = 0xFF,
+ .grp_type = GRP_TYPE_EMU,
+ .grp_size = 0x40,
+ .size_init = pt_reg_grp_size_init,
+ .emu_reg_tbl = pt_emu_reg_header0_tbl,
+ },
+ /* PCI PowerManagement Capability reg group */
+ {
+ .grp_id = PCI_CAP_ID_PM,
+ .grp_type = GRP_TYPE_EMU,
+ .grp_size = PCI_PM_SIZEOF,
+ .size_init = pt_pm_size_init,
+ .emu_reg_tbl = pt_emu_reg_pm_tbl,
+ },
+ /* AGP Capability Structure reg group */
+ {
+ .grp_id = PCI_CAP_ID_AGP,
+ .grp_type = GRP_TYPE_HARDWIRED,
+ .grp_size = 0x30,
+ .size_init = pt_reg_grp_size_init,
+ },
+ /* Vital Product Data Capability Structure reg group */
+ {
+ .grp_id = PCI_CAP_ID_VPD,
+ .grp_type = GRP_TYPE_EMU,
+ .grp_size = 0x08,
+ .size_init = pt_reg_grp_size_init,
+ .emu_reg_tbl = pt_emu_reg_vpd_tbl,
+ },
+ /* Slot Identification reg group */
+ {
+ .grp_id = PCI_CAP_ID_SLOTID,
+ .grp_type = GRP_TYPE_HARDWIRED,
+ .grp_size = 0x04,
+ .size_init = pt_reg_grp_size_init,
+ },
+ /* PCI-X Capabilities List Item reg group */
+ {
+ .grp_id = PCI_CAP_ID_PCIX,
+ .grp_type = GRP_TYPE_HARDWIRED,
+ .grp_size = 0x18,
+ .size_init = pt_reg_grp_size_init,
+ },
+ /* Vendor Specific Capability Structure reg group */
+ {
+ .grp_id = PCI_CAP_ID_VNDR,
+ .grp_type = GRP_TYPE_EMU,
+ .grp_size = 0xFF,
+ .size_init = pt_vendor_size_init,
+ .emu_reg_tbl = pt_emu_reg_vendor_tbl,
+ },
+ /* SHPC Capability List Item reg group */
+ {
+ .grp_id = PCI_CAP_ID_SHPC,
+ .grp_type = GRP_TYPE_HARDWIRED,
+ .grp_size = 0x08,
+ .size_init = pt_reg_grp_size_init,
+ },
+ /* Subsystem ID and Subsystem Vendor ID Capability List Item reg group */
+ {
+ .grp_id = PCI_CAP_ID_SSVID,
+ .grp_type = GRP_TYPE_HARDWIRED,
+ .grp_size = 0x08,
+ .size_init = pt_reg_grp_size_init,
+ },
+ /* AGP 8x Capability Structure reg group */
+ {
+ .grp_id = PCI_CAP_ID_AGP3,
+ .grp_type = GRP_TYPE_HARDWIRED,
+ .grp_size = 0x30,
+ .size_init = pt_reg_grp_size_init,
+ },
+ /* PCI Express Capability Structure reg group */
+ {
+ .grp_id = PCI_CAP_ID_EXP,
+ .grp_type = GRP_TYPE_EMU,
+ .grp_size = 0xFF,
+ .size_init = pt_pcie_size_init,
+ .emu_reg_tbl = pt_emu_reg_pcie_tbl,
+ },
+ {
+ .grp_size = 0,
+ },
+};
+
+/* initialize Capabilities Pointer or Next Pointer register */
+static int pt_ptr_reg_init(XenPCIPassthroughState *s,
+ XenPTRegInfo *reg, uint32_t real_offset,
+ uint32_t *data)
+{
+ /* uint32_t reg_field = (uint32_t)s->dev.config[real_offset]; */
+ uint32_t reg_field = pci_get_byte(s->dev.config + real_offset);
+ int i;
+
+ /* find capability offset */
+ while (reg_field) {
+ for (i = 0; pt_emu_reg_grp_tbl[i].grp_size != 0; i++) {
+ if (pt_hide_dev_cap(s->real_device,
+ pt_emu_reg_grp_tbl[i].grp_id)) {
+ continue;
+ }
+ if (pt_emu_reg_grp_tbl[i].grp_id == s->dev.config[reg_field]) {
+ if (pt_emu_reg_grp_tbl[i].grp_type == GRP_TYPE_EMU) {
+ goto out;
+ }
+ /* ignore the 0 hardwired capability, find next one */
+ break;
+ }
+ }
+ /* next capability */
+ /* reg_field = (uint32_t)s->dev.config[reg_field + 1]; */
+ reg_field = pci_get_byte(s->dev.config + reg_field + 1);
+ }
+
+out:
+ *data = reg_field;
+ return 0;
+}
+
+
+/*************
+ * Main
+ */
+
+/* restore a part of I/O device register */
+static int pt_config_restore(XenPCIPassthroughState *s)
+{
+ XenPTRegGroup *reg_grp_entry = NULL;
+ XenPTReg *reg_entry = NULL;
+ XenPTRegInfo *reg = NULL;
+ uint32_t real_offset = 0;
+ uint32_t read_val = 0;
+ uint32_t val = 0;
+ int rc = 0;
+
+ /* find emulate register group entry */
+ QLIST_FOREACH(reg_grp_entry, &s->reg_grp_tbl, entries) {
+ /* find emulate register entry */
+ QLIST_FOREACH(reg_entry, &reg_grp_entry->reg_tbl_list, entries) {
+ reg = reg_entry->reg;
+
+ /* check whether restoring is needed */
+ if (!reg->u.b.restore) {
+ continue;
+ }
+
+ real_offset = reg_grp_entry->base_offset + reg->offset;
+
+ /* read I/O device register value */
+ rc = host_pci_get_block(s->real_device, real_offset,
+ (uint8_t *)&read_val, reg->size);
+
+ if (rc < 0) {
+ PT_ERR(&s->dev, "pci_read_block failed. "
+ "return value: %d.\n", rc);
+ memset(&read_val, 0xff, reg->size);
+ }
+
+ val = 0;
+
+ /* restore based on register size */
+ switch (reg->size) {
+ case 1:
+ /* byte register */
+ rc = reg->u.b.restore(s, reg_entry, real_offset,
+ (uint8_t)read_val, (uint8_t *)&val);
+ break;
+ case 2:
+ /* word register */
+ rc = reg->u.w.restore(s, reg_entry, real_offset,
+ (uint16_t)read_val, (uint16_t *)&val);
+ break;
+ case 4:
+ /* double word register */
+ rc = reg->u.dw.restore(s, reg_entry, real_offset,
+ (uint32_t)read_val, (uint32_t *)&val);
+ break;
+ }
+
+ /* restoring error */
+ if (rc < 0) {
+ xen_shutdown_fatal_error("Internal error: Invalid restoring."
+ " (%s, rc: %d)\n", __func__, rc);
+ return -1;
+ }
+
+ PT_LOG_CONFIG(&s->dev, real_offset, val, reg->size);
+
+ rc = host_pci_set_block(s->real_device, real_offset,
+ (uint8_t *)&val, reg->size);
+
+ if (rc < 0) {
+ PT_ERR(&s->dev, "pci_write_block failed. "
+ "return value: %d.\n", rc);
+ return -1;
+ }
+ }
+ }
+
+ /* if AER supported, restore it */
+ if (s->pm_state->aer_base) {
+ pt_aer_reg_restore(s);
+ }
+ return 0;
+}
+/* reinitialize all emulate registers */
+static int pt_config_reinit(XenPCIPassthroughState *s)
+{
+ XenPTRegGroup *reg_grp_entry = NULL;
+ XenPTReg *reg_entry = NULL;
+ XenPTRegInfo *reg = NULL;
+ int rc = 0;
+
+ /* find emulate register group entry */
+ QLIST_FOREACH(reg_grp_entry, &s->reg_grp_tbl, entries) {
+ /* find emulate register entry */
+ QLIST_FOREACH(reg_entry, &reg_grp_entry->reg_tbl_list, entries) {
+ reg = reg_entry->reg;
+ if (reg->init) {
+ /* initialize emulate register */
+ rc = reg->init(s, reg_entry->reg,
+ reg_grp_entry->base_offset + reg->offset,
+ &reg_entry->data);
+ if (rc < 0) {
+ return rc;
+ }
+ }
+ }
+ }
+ return 0;
+}
+
+static int pt_init_pci_config(XenPCIPassthroughState *s)
+{
+ PCIDevice *d = &s->dev;
+ int rc = 0;
+
+ PT_LOG(d, "Reinitialize PCI configuration registers due to power state"
+ " transition with internal reset.\n");
+
+ /* restore a part of I/O device register */
+ rc = pt_config_restore(s);
+ if (rc < 0) {
+ return rc;
+ }
+
+ /* reinitialize all emulate register */
+ rc = pt_config_reinit(s);
+ if (rc < 0) {
+ return rc;
+ }
+
+ /* rebind machine_irq to device */
+ if (s->machine_irq != 0) {
+ uint8_t e_device = PCI_SLOT(s->dev.devfn);
+ uint8_t e_intx = pci_intx(s);
+
+ rc = xc_domain_bind_pt_pci_irq(xen_xc, xen_domid, s->machine_irq, 0,
+ e_device, e_intx);
+ if (rc < 0) {
+ PT_ERR(d, "Rebinding of interrupt failed! rc=%d\n", rc);
+ }
+ }
+
+ return rc;
+}
+
+static uint8_t find_cap_offset(XenPCIPassthroughState *s, uint8_t cap)
+{
+ uint8_t id;
+ int max_cap = 48;
+ uint8_t pos = PCI_CAPABILITY_LIST;
+ uint8_t status = 0;
+
+ if (host_pci_get_byte(s->real_device, PCI_STATUS, &status)) {
+ return 0;
+ }
+ if ((status & PCI_STATUS_CAP_LIST) == 0) {
+ return 0;
+ }
+
+ while (max_cap--) {
+ if (host_pci_get_byte(s->real_device, pos, &pos)) {
+ break;
+ }
+ if (pos < 0x40) {
+ break;
+ }
+
+ pos &= ~3;
+ if (host_pci_get_byte(s->real_device, pos + PCI_CAP_LIST_ID, &id)) {
+ break;
+ }
+
+ if (id == 0xff) {
+ break;
+ }
+ if (id == cap) {
+ return pos;
+ }
+
+ pos += PCI_CAP_LIST_NEXT;
+ }
+ return 0;
+}
+
+static int pt_config_reg_init(XenPCIPassthroughState *s,
+ XenPTRegGroup *reg_grp, XenPTRegInfo *reg)
+{
+ XenPTReg *reg_entry;
+ uint32_t data = 0;
+ int rc = 0;
+
+ reg_entry = g_new0(XenPTReg, 1);
+ reg_entry->reg = reg;
+
+ if (reg->init) {
+ /* initialize emulate register */
+ rc = reg->init(s, reg_entry->reg,
+ reg_grp->base_offset + reg->offset, &data);
+ if (rc < 0) {
+ free(reg_entry);
+ return rc;
+ }
+ if (data == PT_INVALID_REG) {
+ /* free unused BAR register entry */
+ free(reg_entry);
+ return 0;
+ }
+ /* set register value */
+ reg_entry->data = data;
+ }
+ /* list add register entry */
+ QLIST_INSERT_HEAD(&reg_grp->reg_tbl_list, reg_entry, entries);
+
+ return 0;
+}
+
+int pt_config_init(XenPCIPassthroughState *s)
+{
+ XenPTRegGroup *reg_grp_entry = NULL;
+ uint32_t reg_grp_offset = 0;
+ XenPTRegInfo *reg_tbl = NULL;
+ int i, j, rc;
+
+ QLIST_INIT(&s->reg_grp_tbl);
+
+ for (i = 0; pt_emu_reg_grp_tbl[i].grp_size != 0; i++) {
+ if (pt_emu_reg_grp_tbl[i].grp_id != 0xFF) {
+ if (pt_hide_dev_cap(s->real_device,
+ pt_emu_reg_grp_tbl[i].grp_id)) {
+ continue;
+ }
+
+ reg_grp_offset = find_cap_offset(s, pt_emu_reg_grp_tbl[i].grp_id);
+
+ if (!reg_grp_offset) {
+ continue;
+ }
+ }
+
+ reg_grp_entry = g_new0(XenPTRegGroup, 1);
+ QLIST_INIT(&reg_grp_entry->reg_tbl_list);
+ QLIST_INSERT_HEAD(&s->reg_grp_tbl, reg_grp_entry, entries);
+
+ reg_grp_entry->base_offset = reg_grp_offset;
+ reg_grp_entry->reg_grp = pt_emu_reg_grp_tbl + i;
+ if (pt_emu_reg_grp_tbl[i].size_init) {
+ /* get register group size */
+ rc = pt_emu_reg_grp_tbl[i].size_init(s, reg_grp_entry->reg_grp,
+ reg_grp_offset,
+ &reg_grp_entry->size);
+ if (rc < 0) {
+ pt_config_delete(s);
+ return rc;
+ }
+ }
+
+ if (pt_emu_reg_grp_tbl[i].grp_type == GRP_TYPE_EMU) {
+ if (pt_emu_reg_grp_tbl[i].emu_reg_tbl) {
+ reg_tbl = pt_emu_reg_grp_tbl[i].emu_reg_tbl;
+ /* initialize capability register */
+ for (j = 0; reg_tbl->size != 0; j++, reg_tbl++) {
+ /* initialize capability register */
+ rc = pt_config_reg_init(s, reg_grp_entry, reg_tbl);
+ if (rc < 0) {
+ pt_config_delete(s);
+ return rc;
+ }
+ }
+ }
+ }
+ reg_grp_offset = 0;
+ }
+
+ return 0;
+}
+
+/* delete all emulate register */
+void pt_config_delete(XenPCIPassthroughState *s)
+{
+ struct XenPTRegGroup *reg_group, *next_grp;
+ struct XenPTReg *reg, *next_reg;
+
+ /* free Power Management info table */
+ if (s->pm_state) {
+ if (s->pm_state->pm_timer) {
+ qemu_del_timer(s->pm_state->pm_timer);
+ qemu_free_timer(s->pm_state->pm_timer);
+ s->pm_state->pm_timer = NULL;
+ }
+
+ g_free(s->pm_state);
+ }
+
+ /* free all register group entry */
+ QLIST_FOREACH_SAFE(reg_group, &s->reg_grp_tbl, entries, next_grp) {
+ /* free all register entry */
+ QLIST_FOREACH_SAFE(reg, &reg_group->reg_tbl_list, entries, next_reg) {
+ QLIST_REMOVE(reg, entries);
+ g_free(reg);
+ }
+
+ QLIST_REMOVE(reg_group, entries);
+ g_free(reg_group);
+ }
+}
--
Anthony PERARD


_______________________________________________
Xen-devel mailing list
Xen-devel@lists.xensource.com
http://lists.xensource.com/xen-devel
Re: [PATCH V5 08/10] Introduce Xen PCI Passthrough, PCI config space helpers (2/3) [ In reply to ]
On Thu, Nov 24, 2011 at 05:44:37PM +0000, Anthony PERARD wrote:
> From: Allen Kay <allen.m.kay@intel.com>
>
> A more complete history can be found here:
> git://xenbits.xensource.com/qemu-xen-unstable.git
>
> Signed-off-by: Allen Kay <allen.m.kay@intel.com>
> Signed-off-by: Guy Zana <guy@neocleus.com>
> Signed-off-by: Anthony PERARD <anthony.perard@citrix.com>
> ---
> hw/xen_pci_passthrough.c | 15 +
> hw/xen_pci_passthrough_config_init.c | 2131 ++++++++++++++++++++++++++++++++++
> 2 files changed, 2146 insertions(+), 0 deletions(-)
>
> diff --git a/hw/xen_pci_passthrough.c b/hw/xen_pci_passthrough.c
> index 998470b..c816ed5 100644
> --- a/hw/xen_pci_passthrough.c
> +++ b/hw/xen_pci_passthrough.c
> @@ -360,6 +360,11 @@ out:
> PT_ERR(d, "pci_write_block failed. return value: %d.\n", rc);
> }
> }
> +
> + if (s->pm_state != NULL && s->pm_state->flags & PT_FLAG_TRANSITING) {
> + qemu_mod_timer(s->pm_state->pm_timer,
> + qemu_get_clock_ms(rt_clock) + s->pm_state->pm_delay);
> + }

Is this in the right place? There is code before in this function that
does:

if (s->pm_state != NULL && s->pm_state->flags & PT_FLAG_TRANSITING)
return;

so we would never get here, I think?

> }
>
> /* ioport/iomem space*/
> @@ -706,6 +711,13 @@ static int pt_initfn(PCIDevice *pcidev)
> /* Handle real device's MMIO/PIO BARs */
> pt_register_regions(s);
>
> + /* reinitialize each config register to be emulated */
> + if (pt_config_init(s)) {
> + PT_ERR(pcidev, "PCI Config space initialisation failed.\n");
> + host_pci_device_put(s->real_device);
> + return -1;
> + }
> +
> /* Bind interrupt */
> if (!s->dev.config[PCI_INTERRUPT_PIN]) {
> PT_LOG(pcidev, "no pin interrupt\n");
> @@ -798,6 +810,9 @@ static int pt_unregister_device(PCIDevice *pcidev)
> }
> }
>
> + /* delete all emulated config registers */
> + pt_config_delete(s);
> +
> /* unregister real device's MMIO/PIO BARs */
> pt_unregister_regions(s);
>
> diff --git a/hw/xen_pci_passthrough_config_init.c b/hw/xen_pci_passthrough_config_init.c
> index 1e9de64..ae64544 100644
> --- a/hw/xen_pci_passthrough_config_init.c
> +++ b/hw/xen_pci_passthrough_config_init.c
> @@ -1,11 +1,2142 @@
> +/*
> + * Copyright (c) 2007, Neocleus Corporation.
> + * Copyright (c) 2007, Intel Corporation.
> + *
> + * This work is licensed under the terms of the GNU GPL, version 2. See
> + * the COPYING file in the top-level directory.
> + *
> + * Alex Novik <alex@neocleus.com>
> + * Allen Kay <allen.m.kay@intel.com>
> + * Guy Zana <guy@neocleus.com>
> + *
> + * This file implements direct PCI assignment to a HVM guest
> + */
> +
> +#include "qemu-timer.h"
> +#include "xen_backend.h"
> #include "xen_pci_passthrough.h"
>
> +#define PT_MERGE_VALUE(value, data, val_mask) \
> + (((value) & (val_mask)) | ((data) & ~(val_mask)))
> +
> +#define PT_INVALID_REG 0xFFFFFFFF /* invalid register value */
> +
> +/* prototype */
> +
> +static int pt_ptr_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
> + uint32_t real_offset, uint32_t *data);
> +static int pt_init_pci_config(XenPCIPassthroughState *s);
> +
> +
> +/* helper */
> +
> +/* A return value of 1 means the capability should NOT be exposed to guest. */
> +static int pt_hide_dev_cap(const HostPCIDevice *d, uint8_t grp_id)
> +{
> + switch (grp_id) {
> + case PCI_CAP_ID_EXP:
> + /* The PCI Express Capability Structure of the VF of Intel 82599 10GbE
> + * Controller looks trivial, e.g., the PCI Express Capabilities
> + * Register is 0. We should not try to expose it to guest.
> + *
> + * The datasheet is available at
> + * http://download.intel.com/design/network/datashts/82599_datasheet.pdf
> + *
> + * See 'Table 9.7. VF PCIe Configuration Space' of the datasheet, the
> + * PCI Express Capability Structure of the VF of Intel 82599 10GbE
> + * Controller looks trivial, e.g., the PCI Express Capabilities
> + * Register is 0, so the Capability Version is 0 and
> + * pt_pcie_size_init() would fail.
> + */
> + if (d->vendor_id == PCI_VENDOR_ID_INTEL &&
> + d->device_id == PCI_DEVICE_ID_INTEL_82599_VF) {
> + return 1;
> + }
> + break;
> + }
> + return 0;
> +}
> +
> +/* find emulate register group entry */
> XenPTRegGroup *pt_find_reg_grp(XenPCIPassthroughState *s, uint32_t address)
> {
> + XenPTRegGroup *entry = NULL;
> +
> + /* find register group entry */
> + QLIST_FOREACH(entry, &s->reg_grp_tbl, entries) {
> + /* check address */
> + if ((entry->base_offset <= address)
> + && ((entry->base_offset + entry->size) > address)) {
> + return entry;
> + }
> + }
> +
> + /* group entry not found */
> return NULL;
> }
>
> +/* find emulate register entry */
> XenPTReg *pt_find_reg(XenPTRegGroup *reg_grp, uint32_t address)
> {
> + XenPTReg *reg_entry = NULL;
> + XenPTRegInfo *reg = NULL;
> + uint32_t real_offset = 0;
> +
> + /* find register entry */
> + QLIST_FOREACH(reg_entry, &reg_grp->reg_tbl_list, entries) {
> + reg = reg_entry->reg;
> + real_offset = reg_grp->base_offset + reg->offset;
> + /* check address */
> + if ((real_offset <= address)
> + && ((real_offset + reg->size) > address)) {
> + return reg_entry;
> + }
> + }
> +
> return NULL;
> }
> +
> +/* parse BAR */
> +static PTBarFlag pt_bar_reg_parse(XenPCIPassthroughState *s, XenPTRegInfo *reg)
> +{
> + PCIDevice *d = &s->dev;
> + XenPTRegion *region = NULL;
> + PCIIORegion *r;
> + int index = 0;
> +
> + /* check 64bit BAR */
> + index = pt_bar_offset_to_index(reg->offset);
> + if ((0 < index) && (index < PCI_ROM_SLOT)) {
> + int flags = s->real_device->io_regions[index - 1].flags;

Can you put a comment explaining why you need to shift it?
I presume its b/c the ROM slot is its own variable, but it would useful
to have that explicitly stated.

> +
> + if ((flags & IORESOURCE_MEM) && (flags & IORESOURCE_MEM_64)) {

You could collapse these two I think?
(flags & (IORESOURCE_MEM | IORESOURCE_MEM_64))

> + region = &s->bases[index - 1];
> + if (region->bar_flag != PT_BAR_FLAG_UPPER) {
> + return PT_BAR_FLAG_UPPER;
> + }
> + }
> + }
> +
> + /* check unused BAR */
> + r = &d->io_regions[index];
> + if (r->size == 0) {
> + return PT_BAR_FLAG_UNUSED;
> + }
> +
> + /* for ExpROM BAR */
> + if (index == PCI_ROM_SLOT) {
> + return PT_BAR_FLAG_MEM;
> + }
> +
> + /* check BAR I/O indicator */
> + if (s->real_device->io_regions[index].flags & IORESOURCE_IO) {
> + return PT_BAR_FLAG_IO;
> + } else {
> + return PT_BAR_FLAG_MEM;
> + }
> +}
> +
> +
> +/****************
> + * general register functions
> + */
> +
> +/* register initialization function */
> +
> +static int pt_common_reg_init(XenPCIPassthroughState *s,
> + XenPTRegInfo *reg, uint32_t real_offset,
> + uint32_t *data)
> +{
> + *data = reg->init_val;
> + return 0;
> +}
> +
> +/* Read register functions */
> +
> +static int pt_byte_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint8_t *value, uint8_t valid_mask)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + uint8_t valid_emu_mask = 0;
> +
> + /* emulate byte register */
> + valid_emu_mask = reg->emu_mask & valid_mask;
> + *value = PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
> +
> + return 0;
> +}
> +static int pt_word_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint16_t *value, uint16_t valid_mask)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + uint16_t valid_emu_mask = 0;
> +
> + /* emulate word register */
> + valid_emu_mask = reg->emu_mask & valid_mask;
> + *value = PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
> +
> + return 0;
> +}
> +static int pt_long_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint32_t *value, uint32_t valid_mask)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + uint32_t valid_emu_mask = 0;
> +
> + /* emulate long register */
> + valid_emu_mask = reg->emu_mask & valid_mask;
> + *value = PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
> +
> + return 0;
> +}
> +
> +/* Write register functions */
> +
> +static int pt_byte_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint8_t *value, uint8_t dev_value,
> + uint8_t valid_mask)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + uint8_t writable_mask = 0;
> + uint8_t throughable_mask = 0;
> +
> + /* modify emulate register */
> + writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
> + cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
> +
> + /* create value for writing to I/O device register */
> + throughable_mask = ~reg->emu_mask & valid_mask;
> + *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
> +
> + return 0;
> +}
> +static int pt_word_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint16_t *value, uint16_t dev_value,
> + uint16_t valid_mask)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + uint16_t writable_mask = 0;
> + uint16_t throughable_mask = 0;
> +
> + /* modify emulate register */
> + writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
> + cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
> +
> + /* create value for writing to I/O device register */
> + throughable_mask = ~reg->emu_mask & valid_mask;
> + *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
> +
> + return 0;
> +}
> +static int pt_long_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint32_t *value, uint32_t dev_value,
> + uint32_t valid_mask)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + uint32_t writable_mask = 0;
> + uint32_t throughable_mask = 0;
> +
> + /* modify emulate register */
> + writable_mask = reg->emu_mask & ~reg->ro_mask & valid_mask;
> + cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
> +
> + /* create value for writing to I/O device register */
> + throughable_mask = ~reg->emu_mask & valid_mask;
> + *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
> +
> + return 0;
> +}
> +
> +/* common restore register fonctions */
> +static int pt_byte_reg_restore(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint32_t real_offset, uint8_t dev_value,
> + uint8_t *value)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + PCIDevice *d = &s->dev;
> +
> + /* use I/O device register's value as restore value */
> + *value = pci_get_byte(d->config + real_offset);
> +
> + /* create value for restoring to I/O device register */
> + *value = PT_MERGE_VALUE(*value, dev_value, reg->emu_mask);
> +
> + return 0;
> +}
> +static int pt_word_reg_restore(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint32_t real_offset, uint16_t dev_value,
> + uint16_t *value)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + PCIDevice *d = &s->dev;
> +
> + /* use I/O device register's value as restore value */
> + *value = pci_get_word(d->config + real_offset);
> +
> + /* create value for restoring to I/O device register */
> + *value = PT_MERGE_VALUE(*value, dev_value, reg->emu_mask);
> +
> + return 0;
> +}
> +
> +
> +/* XenPTRegInfo declaration
> + * - only for emulated register (either a part or whole bit).
> + * - for passthrough register that need special behavior (like interacting with
> + * other component), set emu_mask to all 0 and specify r/w func properly.
> + * - do NOT use ALL F for init_val, otherwise the tbl will not be registered.
> + */
> +
> +/********************
> + * Header Type0
> + */
> +
> +static int pt_vendor_reg_init(XenPCIPassthroughState *s,
> + XenPTRegInfo *reg, uint32_t real_offset,
> + uint32_t *data)
> +{
> + *data = s->real_device->vendor_id;
> + return 0;
> +}
> +static int pt_device_reg_init(XenPCIPassthroughState *s,
> + XenPTRegInfo *reg, uint32_t real_offset,
> + uint32_t *data)
> +{
> + *data = s->real_device->device_id;
> + return 0;
> +}
> +static int pt_status_reg_init(XenPCIPassthroughState *s,
> + XenPTRegInfo *reg, uint32_t real_offset,
> + uint32_t *data)
> +{
> + XenPTRegGroup *reg_grp_entry = NULL;
> + XenPTReg *reg_entry = NULL;
> + uint32_t reg_field = 0;
> +
> + /* find Header register group */
> + reg_grp_entry = pt_find_reg_grp(s, PCI_CAPABILITY_LIST);
> + if (reg_grp_entry) {
> + /* find Capabilities Pointer register */
> + reg_entry = pt_find_reg(reg_grp_entry, PCI_CAPABILITY_LIST);
> + if (reg_entry) {
> + /* check Capabilities Pointer register */
> + if (reg_entry->data) {
> + reg_field |= PCI_STATUS_CAP_LIST;
> + } else {
> + reg_field &= ~PCI_STATUS_CAP_LIST;
> + }
> + } else {
> + xen_shutdown_fatal_error("Internal error: Couldn't find XenPTReg*"
> + " for Capabilities Pointer register."
> + " (%s)\n", __func__);
> + return -1;
> + }
> + } else {
> + xen_shutdown_fatal_error("Internal error: Couldn't find XenPTRegGroup"
> + " for Header. (%s)\n", __func__);
> + return -1;
> + }
> +
> + *data = reg_field;
> + return 0;
> +}
> +static int pt_header_type_reg_init(XenPCIPassthroughState *s,
> + XenPTRegInfo *reg, uint32_t real_offset,
> + uint32_t *data)
> +{
> + /* read PCI_HEADER_TYPE */
> + *data = reg->init_val | 0x80;
> + return 0;
> +}
> +
> +/* initialize Interrupt Pin register */
> +static int pt_irqpin_reg_init(XenPCIPassthroughState *s,
> + XenPTRegInfo *reg, uint32_t real_offset,
> + uint32_t *data)
> +{
> + *data = pci_read_intx(s);
> + return 0;
> +}
> +
> +/* Command register */
> +static int pt_cmd_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint16_t *value, uint16_t valid_mask)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + uint16_t valid_emu_mask = 0;
> + uint16_t emu_mask = reg->emu_mask;
> +
> + if (s->is_virtfn) {
> + emu_mask |= PCI_COMMAND_MEMORY;
> + }
> +
> + /* emulate word register */
> + valid_emu_mask = emu_mask & valid_mask;
> + *value = PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
> +
> + return 0;
> +}
> +static int pt_cmd_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint16_t *value, uint16_t dev_value,

So the *value here is the return value right? How about
*response ?

> + uint16_t valid_mask)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + uint16_t writable_mask = 0;
> + uint16_t throughable_mask = 0;
> + uint16_t wr_value = *value;
> + uint16_t emu_mask = reg->emu_mask;
> +
> + if (s->is_virtfn) {
> + emu_mask |= PCI_COMMAND_MEMORY;
> + }
> +
> + /* modify emulate register */
> + writable_mask = ~reg->ro_mask & valid_mask;
> + cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
> +
> + /* create value for writing to I/O device register */
> + throughable_mask = ~emu_mask & valid_mask;

What does 'throughable' mean? Is there a better term for it?
Say filtered? emulated? cleaned?

> +
> + if (*value & PCI_COMMAND_INTX_DISABLE) {
> + throughable_mask |= PCI_COMMAND_INTX_DISABLE;
> + } else {
> + if (s->machine_irq) {
> + throughable_mask |= PCI_COMMAND_INTX_DISABLE;
> + }
> + }
> +
> + *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
> +
> + /* mapping BAR */
> + pt_bar_mapping(s, wr_value & PCI_COMMAND_IO,
> + wr_value & PCI_COMMAND_MEMORY);

Ah, here we kick of the real memory mapping with the hypervisor.
You might want to expand the comment to say that.

> +
> + return 0;
> +}
> +static int pt_cmd_reg_restore(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint32_t real_offset, uint16_t dev_value,
> + uint16_t *value)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + PCIDevice *d = &s->dev;
> + uint16_t restorable_mask = 0;
> +
> + /* use I/O device register's value as restore value */
> + *value = pci_get_word(d->config + real_offset);
> +
> + /* create value for restoring to I/O device register

s/to/the/

> + * but do not include Fast Back-to-Back Enable bit.
> + */
> + restorable_mask = reg->emu_mask & ~PCI_COMMAND_FAST_BACK;
> + *value = PT_MERGE_VALUE(*value, dev_value, restorable_mask);
> +
> + if (!s->machine_irq) {
> + *value |= PCI_COMMAND_INTX_DISABLE;
> + } else {
> + *value &= ~PCI_COMMAND_INTX_DISABLE;
> + }
> +
> + return 0;
> +}
> +
> +/* BAR */
> +#define PT_BAR_MEM_RO_MASK 0x0000000F /* BAR ReadOnly mask(Memory) */
> +#define PT_BAR_MEM_EMU_MASK 0xFFFFFFF0 /* BAR emul mask(Memory) */
> +#define PT_BAR_IO_RO_MASK 0x00000003 /* BAR ReadOnly mask(I/O) */
> +#define PT_BAR_IO_EMU_MASK 0xFFFFFFFC /* BAR emul mask(I/O) */
> +
> +static inline uint32_t base_address_with_flags(HostPCIIORegion *hr)
> +{
> + if ((hr->flags & PCI_BASE_ADDRESS_SPACE) == PCI_BASE_ADDRESS_SPACE_IO) {
> + return hr->base_addr | (hr->flags & ~PCI_BASE_ADDRESS_IO_MASK);
> + } else {
> + return hr->base_addr | (hr->flags & ~PCI_BASE_ADDRESS_MEM_MASK);
> + }
> +}
> +
> +static int pt_bar_reg_init(XenPCIPassthroughState *s, XenPTRegInfo *reg,
> + uint32_t real_offset, uint32_t *data)
> +{
> + uint32_t reg_field = 0;
> + int index;
> +
> + /* get BAR index */
> + index = pt_bar_offset_to_index(reg->offset);
> + if (index < 0) {

Should we check for index > PCI_ROM_BASE as well?
> + PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
> + return -1;
> + }
> +
> + /* set initial guest physical base address to -1 */
> + s->bases[index].e_physbase = -1;
> +
> + /* set BAR flag */
> + s->bases[index].bar_flag = pt_bar_reg_parse(s, reg);
> + if (s->bases[index].bar_flag == PT_BAR_FLAG_UNUSED) {
> + reg_field = PT_INVALID_REG;
> + }
> +
> + *data = reg_field;
> + return 0;
> +}
> +static int pt_bar_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint32_t *value, uint32_t valid_mask)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + uint32_t valid_emu_mask = 0;
> + uint32_t bar_emu_mask = 0;
> + int index;
> +
> + /* get BAR index */
> + index = pt_bar_offset_to_index(reg->offset);
> + if (index < 0) {

Should we check for index > PCI_ROM_BASE?
> + PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
> + return -1;
> + }
> +
> + /* use fixed-up value from kernel sysfs */
> + *value = base_address_with_flags(&s->real_device->io_regions[index]);
> +
> + /* set emulate mask depend on BAR flag */
> + switch (s->bases[index].bar_flag) {
> + case PT_BAR_FLAG_MEM:
> + bar_emu_mask = PT_BAR_MEM_EMU_MASK;
> + break;
> + case PT_BAR_FLAG_IO:
> + bar_emu_mask = PT_BAR_IO_EMU_MASK;
> + break;
> + case PT_BAR_FLAG_UPPER:
> + bar_emu_mask = PT_BAR_ALLF;
> + break;
> + default:
> + break;
> + }
> +
> + /* emulate BAR */
> + valid_emu_mask = bar_emu_mask & valid_mask;
> + *value = PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
> +
> + return 0;
> +}
> +static int pt_bar_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint32_t *value, uint32_t dev_value,
> + uint32_t valid_mask)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + XenPTRegGroup *reg_grp_entry = NULL;
> + XenPTReg *reg_entry = NULL;
> + XenPTRegion *base = NULL;
> + PCIDevice *d = &s->dev;
> + PCIIORegion *r;
> + uint32_t writable_mask = 0;
> + uint32_t throughable_mask = 0;
> + uint32_t bar_emu_mask = 0;
> + uint32_t bar_ro_mask = 0;
> + uint32_t new_addr, last_addr;
> + uint32_t prev_offset;
> + uint32_t r_size = 0;
> + int index = 0;
> +
> + /* get BAR index */
> + index = pt_bar_offset_to_index(reg->offset);
> + if (index < 0) {
> + PT_ERR(d, "Internal error: Invalid BAR index [%d].\n", index);
> + return -1;
> + }
> +
> + r = &d->io_regions[index];
> + base = &s->bases[index];
> + r_size = pt_get_emul_size(base->bar_flag, r->size);
> +
> + /* set emulate mask and read-only mask depend on BAR flag */
^^values ^^ the

> + switch (s->bases[index].bar_flag) {
> + case PT_BAR_FLAG_MEM:
> + bar_emu_mask = PT_BAR_MEM_EMU_MASK;
> + bar_ro_mask = PT_BAR_MEM_RO_MASK | (r_size - 1);
> + break;
> + case PT_BAR_FLAG_IO:
> + bar_emu_mask = PT_BAR_IO_EMU_MASK;
> + bar_ro_mask = PT_BAR_IO_RO_MASK | (r_size - 1);
> + break;
> + case PT_BAR_FLAG_UPPER:
> + bar_emu_mask = PT_BAR_ALLF;
> + bar_ro_mask = 0; /* all upper 32bit are R/W */
> + break;
> + default:
> + break;
> + }
> +
> + /* modify emulate register */
> + writable_mask = bar_emu_mask & ~bar_ro_mask & valid_mask;
> + cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
> +
> + /* check whether we need to update the virtual region address or not */
> + switch (s->bases[index].bar_flag) {
> + case PT_BAR_FLAG_MEM:
> + /* nothing to do */
> + break;
> + case PT_BAR_FLAG_IO:
> + new_addr = cfg_entry->data;
> + last_addr = new_addr + r_size - 1;
> + /* check invalid address */
> + if (last_addr <= new_addr || !new_addr || last_addr >= UINT16_MAX) {
> + /* check 64K range */
> + if ((last_addr >= UINT16_MAX) &&
> + (cfg_entry->data != (PT_BAR_ALLF & ~bar_ro_mask))) {

You seem to be using 'PT_BAR_ALLF & ~bar_ro_mask' this function and
never actually use the bar_ro_mask by itself. Perhaps you can
(before this switch statement) do:

bar_ro_mask = PT_BAR_ALLF & ~bar_ro_mask;


> + PT_WARN(d, "Guest attempt to set Base Address "
> + "over the 64KB. (offset: 0x%02x,"
> + " addr: 0x%08x, size: 0x%08x)\n",
> + reg->offset, new_addr, r_size);
> + }
> + /* just remove mapping */
> + r->addr = PCI_BAR_UNMAPPED;
> + goto exit;
> + }
> + break;
> + case PT_BAR_FLAG_UPPER:
> + if (cfg_entry->data) {
> + if (cfg_entry->data != (PT_BAR_ALLF & ~bar_ro_mask)) {
> + PT_WARN(d, "Guest attempt to set high MMIO Base Address. "
> + "Ignore mapping. "
> + "(offset: 0x%02x, high address: 0x%08x)\n",
> + reg->offset, cfg_entry->data);
> + }
> + /* clear lower address */
> + d->io_regions[index-1].addr = -1;
> + } else {
> + /* find lower 32bit BAR */
> + prev_offset = (reg->offset - 4);
> + reg_grp_entry = pt_find_reg_grp(s, prev_offset);
> + if (reg_grp_entry) {
> + reg_entry = pt_find_reg(reg_grp_entry, prev_offset);
> + if (reg_entry) {
> + /* restore lower address */
> + d->io_regions[index-1].addr = reg_entry->data;
> + } else {
> + return -1;
> + }
> + } else {
> + return -1;
> + }
> + }
> +
> + /* never mapping the 'empty' upper region,
> + * because we'll do it enough for the lower region.

umm, not sure what you mean here. Do you mean to say:
"Do not map the 'empty' upper region b/c we do not need to.
As we only need the lower region."?


> + */
> + r->addr = -1;
> + goto exit;
> + default:
> + break;
> + }
> +
> + /* update the corresponding virtual region address */
> + /*
> + * When guest code tries to get block size of mmio, it will write all "1"s
> + * into pci bar register. In this case, cfg_entry->data == writable_mask.
> + * Especially for devices with large mmio, the value of writable_mask
> + * is likely to be a guest physical address that has been mapped to ram
> + * rather than mmio. Remapping this value to mmio should be prevented.
> + */
> +
> + if (cfg_entry->data != writable_mask) {
> + r->addr = cfg_entry->data;
> + }
> +
> +exit:
> + /* create value for writing to I/O device register */
> + throughable_mask = ~bar_emu_mask & valid_mask;
> + *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
> +
> + /* After BAR reg update, we need to remap BAR */
> + reg_grp_entry = pt_find_reg_grp(s, PCI_COMMAND);
> + if (reg_grp_entry) {
> + reg_entry = pt_find_reg(reg_grp_entry, PCI_COMMAND);
> + if (reg_entry) {
> + pt_bar_mapping_one(s, index, reg_entry->data & PCI_COMMAND_IO,
> + reg_entry->data & PCI_COMMAND_MEMORY);
> + }
> + }
> +
> + return 0;
> +}
> +static int pt_bar_reg_restore(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint32_t real_offset, uint32_t dev_value,
> + uint32_t *value)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + uint32_t bar_emu_mask = 0;
> + int index = 0;
> +
> + /* get BAR index */
> + index = pt_bar_offset_to_index(reg->offset);
> + if (index < 0) {
> + PT_ERR(&s->dev, "Internal error: Invalid BAR index [%d].\n", index);
> + return -1;
> + }
> +
> + /* use value from kernel sysfs */
> + if (s->bases[index].bar_flag == PT_BAR_FLAG_UPPER) {
> + *value = s->real_device->io_regions[index - 1].base_addr >> 32;
> + } else {
> + *value = base_address_with_flags(&s->real_device->io_regions[index]);
> + }
> +
> + /* set emulate mask depend on BAR flag */
> + switch (s->bases[index].bar_flag) {
> + case PT_BAR_FLAG_MEM:
> + bar_emu_mask = PT_BAR_MEM_EMU_MASK;
> + break;
> + case PT_BAR_FLAG_IO:
> + bar_emu_mask = PT_BAR_IO_EMU_MASK;
> + break;
> + case PT_BAR_FLAG_UPPER:
> + bar_emu_mask = PT_BAR_ALLF;
> + break;
> + default:
> + break;
> + }
> +
> + /* create value for restoring to I/O device register */
> + *value = PT_MERGE_VALUE(*value, dev_value, bar_emu_mask);
> +
> + return 0;
> +}
> +
> +/* write Exp ROM BAR */
> +static int pt_exp_rom_bar_reg_write(XenPCIPassthroughState *s,
> + XenPTReg *cfg_entry, uint32_t *value,
> + uint32_t dev_value, uint32_t valid_mask)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + XenPTRegGroup *reg_grp_entry = NULL;
> + XenPTReg *reg_entry = NULL;
> + XenPTRegion *base = NULL;
> + PCIDevice *d = (PCIDevice *)&s->dev;
> + PCIIORegion *r;
> + uint32_t writable_mask = 0;
> + uint32_t throughable_mask = 0;
> + pcibus_t r_size = 0;
> + uint32_t bar_emu_mask = 0;
> + uint32_t bar_ro_mask = 0;
> +
> + r = &d->io_regions[PCI_ROM_SLOT];
> + r_size = r->size;
> + base = &s->bases[PCI_ROM_SLOT];
> + /* align memory type resource size */
> + pt_get_emul_size(base->bar_flag, r_size);
> +
> + /* set emulate mask and read-only mask */
> + bar_emu_mask = reg->emu_mask;
> + bar_ro_mask = (reg->ro_mask | (r_size - 1)) & ~PCI_ROM_ADDRESS_ENABLE;
> +
> + /* modify emulate register */
> + writable_mask = ~bar_ro_mask & valid_mask;
> + cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
> +
> + /* update the corresponding virtual region address */
> + /*
> + * When guest code tries to get block size of mmio, it will write all "1"s
> + * into pci bar register. In this case, cfg_entry->data == writable_mask.
> + * Especially for devices with large mmio, the value of writable_mask
> + * is likely to be a guest physical address that has been mapped to ram
> + * rather than mmio. Remapping this value to mmio should be prevented.
> + */
> +
> + if (cfg_entry->data != writable_mask) {
> + r->addr = cfg_entry->data;
> + }
> +
> + /* create value for writing to I/O device register */
> + throughable_mask = ~bar_emu_mask & valid_mask;
> + *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
> +
> + /* After BAR reg update, we need to remap BAR*/
> + reg_grp_entry = pt_find_reg_grp(s, PCI_COMMAND);
> + if (reg_grp_entry) {
> + reg_entry = pt_find_reg(reg_grp_entry, PCI_COMMAND);
> + if (reg_entry) {
> + pt_bar_mapping_one(s, PCI_ROM_SLOT,
> + reg_entry->data & PCI_COMMAND_IO,
> + reg_entry->data & PCI_COMMAND_MEMORY);
> + }
> + }
> +
> + return 0;
> +}
> +/* restore ROM BAR */
> +static int pt_exp_rom_bar_reg_restore(XenPCIPassthroughState *s,
> + XenPTReg *cfg_entry,
> + uint32_t real_offset,
> + uint32_t dev_value, uint32_t *value)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + uint32_t v;
> +
> + if (host_pci_get_long(s->real_device, PCI_ROM_ADDRESS, &v)) {
> + return -1;
> + }
> + /* use value from kernel sysfs */
> + *value = PT_MERGE_VALUE(v, dev_value, reg->emu_mask);
> + return 0;
> +}
> +
> +/* Header Type0 reg static infomation table */
> +static XenPTRegInfo pt_emu_reg_header0_tbl[] = {
> + /* Vendor ID reg */
> + {
> + .offset = PCI_VENDOR_ID,
> + .size = 2,
> + .init_val = 0x0000,
> + .ro_mask = 0xFFFF,
> + .emu_mask = 0xFFFF,
> + .init = pt_vendor_reg_init,
> + .u.w.read = pt_word_reg_read,
> + .u.w.write = pt_word_reg_write,
> + .u.w.restore = NULL,
> + },
> + /* Device ID reg */
> + {
> + .offset = PCI_DEVICE_ID,
> + .size = 2,
> + .init_val = 0x0000,
> + .ro_mask = 0xFFFF,
> + .emu_mask = 0xFFFF,
> + .init = pt_device_reg_init,
> + .u.w.read = pt_word_reg_read,
> + .u.w.write = pt_word_reg_write,
> + .u.w.restore = NULL,
> + },
> + /* Command reg */
> + {
> + .offset = PCI_COMMAND,
> + .size = 2,
> + .init_val = 0x0000,
> + .ro_mask = 0xF880,
> + .emu_mask = 0x0740,
> + .init = pt_common_reg_init,
> + .u.w.read = pt_cmd_reg_read,
> + .u.w.write = pt_cmd_reg_write,
> + .u.w.restore = pt_cmd_reg_restore,
> + },
> + /* Capabilities Pointer reg */
> + {
> + .offset = PCI_CAPABILITY_LIST,
> + .size = 1,
> + .init_val = 0x00,
> + .ro_mask = 0xFF,
> + .emu_mask = 0xFF,
> + .init = pt_ptr_reg_init,
> + .u.b.read = pt_byte_reg_read,
> + .u.b.write = pt_byte_reg_write,
> + .u.b.restore = NULL,
> + },
> + /* Status reg */
> + /* use emulated Cap Ptr value to initialize,
> + * so need to be declared after Cap Ptr reg
> + */
> + {
> + .offset = PCI_STATUS,
> + .size = 2,
> + .init_val = 0x0000,
> + .ro_mask = 0x06FF,
> + .emu_mask = 0x0010,
> + .init = pt_status_reg_init,
> + .u.w.read = pt_word_reg_read,
> + .u.w.write = pt_word_reg_write,
> + .u.w.restore = NULL,
> + },
> + /* Cache Line Size reg */
> + {
> + .offset = PCI_CACHE_LINE_SIZE,
> + .size = 1,
> + .init_val = 0x00,
> + .ro_mask = 0x00,
> + .emu_mask = 0xFF,
> + .init = pt_common_reg_init,
> + .u.b.read = pt_byte_reg_read,
> + .u.b.write = pt_byte_reg_write,
> + .u.b.restore = pt_byte_reg_restore,
> + },
> + /* Latency Timer reg */
> + {
> + .offset = PCI_LATENCY_TIMER,
> + .size = 1,
> + .init_val = 0x00,
> + .ro_mask = 0x00,
> + .emu_mask = 0xFF,
> + .init = pt_common_reg_init,
> + .u.b.read = pt_byte_reg_read,
> + .u.b.write = pt_byte_reg_write,
> + .u.b.restore = pt_byte_reg_restore,
> + },
> + /* Header Type reg */
> + {
> + .offset = PCI_HEADER_TYPE,
> + .size = 1,
> + .init_val = 0x00,
> + .ro_mask = 0xFF,
> + .emu_mask = 0x00,
> + .init = pt_header_type_reg_init,
> + .u.b.read = pt_byte_reg_read,
> + .u.b.write = pt_byte_reg_write,
> + .u.b.restore = NULL,
> + },
> + /* Interrupt Line reg */
> + {
> + .offset = PCI_INTERRUPT_LINE,
> + .size = 1,
> + .init_val = 0x00,
> + .ro_mask = 0x00,
> + .emu_mask = 0xFF,
> + .init = pt_common_reg_init,
> + .u.b.read = pt_byte_reg_read,
> + .u.b.write = pt_byte_reg_write,
> + .u.b.restore = NULL,
> + },
> + /* Interrupt Pin reg */
> + {
> + .offset = PCI_INTERRUPT_PIN,
> + .size = 1,
> + .init_val = 0x00,
> + .ro_mask = 0xFF,
> + .emu_mask = 0xFF,
> + .init = pt_irqpin_reg_init,
> + .u.b.read = pt_byte_reg_read,
> + .u.b.write = pt_byte_reg_write,
> + .u.b.restore = NULL,
> + },
> + /* BAR 0 reg */
> + /* mask of BAR need to be decided later, depends on IO/MEM type */
> + {
> + .offset = PCI_BASE_ADDRESS_0,
> + .size = 4,
> + .init_val = 0x00000000,
> + .init = pt_bar_reg_init,
> + .u.dw.read = pt_bar_reg_read,
> + .u.dw.write = pt_bar_reg_write,
> + .u.dw.restore = pt_bar_reg_restore,
> + },
> + /* BAR 1 reg */
> + {
> + .offset = PCI_BASE_ADDRESS_1,
> + .size = 4,
> + .init_val = 0x00000000,
> + .init = pt_bar_reg_init,
> + .u.dw.read = pt_bar_reg_read,
> + .u.dw.write = pt_bar_reg_write,
> + .u.dw.restore = pt_bar_reg_restore,
> + },
> + /* BAR 2 reg */
> + {
> + .offset = PCI_BASE_ADDRESS_2,
> + .size = 4,
> + .init_val = 0x00000000,
> + .init = pt_bar_reg_init,
> + .u.dw.read = pt_bar_reg_read,
> + .u.dw.write = pt_bar_reg_write,
> + .u.dw.restore = pt_bar_reg_restore,
> + },
> + /* BAR 3 reg */
> + {
> + .offset = PCI_BASE_ADDRESS_3,
> + .size = 4,
> + .init_val = 0x00000000,
> + .init = pt_bar_reg_init,
> + .u.dw.read = pt_bar_reg_read,
> + .u.dw.write = pt_bar_reg_write,
> + .u.dw.restore = pt_bar_reg_restore,
> + },
> + /* BAR 4 reg */
> + {
> + .offset = PCI_BASE_ADDRESS_4,
> + .size = 4,
> + .init_val = 0x00000000,
> + .init = pt_bar_reg_init,
> + .u.dw.read = pt_bar_reg_read,
> + .u.dw.write = pt_bar_reg_write,
> + .u.dw.restore = pt_bar_reg_restore,
> + },
> + /* BAR 5 reg */
> + {
> + .offset = PCI_BASE_ADDRESS_5,
> + .size = 4,
> + .init_val = 0x00000000,
> + .init = pt_bar_reg_init,
> + .u.dw.read = pt_bar_reg_read,
> + .u.dw.write = pt_bar_reg_write,
> + .u.dw.restore = pt_bar_reg_restore,
> + },
> + /* Expansion ROM BAR reg */
> + {
> + .offset = PCI_ROM_ADDRESS,
> + .size = 4,
> + .init_val = 0x00000000,
> + .ro_mask = 0x000007FE,
> + .emu_mask = 0xFFFFF800,
> + .init = pt_bar_reg_init,
> + .u.dw.read = pt_long_reg_read,
> + .u.dw.write = pt_exp_rom_bar_reg_write,
> + .u.dw.restore = pt_exp_rom_bar_reg_restore,
> + },
> + {
> + .size = 0,
> + },
> +};
> +
> +
> +/*********************************
> + * Vital Product Data Capability
> + */
> +
> +/* Vital Product Data Capability Structure reg static infomation table */
> +static XenPTRegInfo pt_emu_reg_vpd_tbl[] = {
> + {
> + .offset = PCI_CAP_LIST_NEXT,
> + .size = 1,
> + .init_val = 0x00,
> + .ro_mask = 0xFF,
> + .emu_mask = 0xFF,
> + .init = pt_ptr_reg_init,
> + .u.b.read = pt_byte_reg_read,
> + .u.b.write = pt_byte_reg_write,
> + .u.b.restore = NULL,
> + },
> + {
> + .size = 0,
> + },
> +};
> +
> +
> +/**************************************
> + * Vendor Specific Capability
> + */
> +
> +/* Vendor Specific Capability Structure reg static infomation table */
> +static XenPTRegInfo pt_emu_reg_vendor_tbl[] = {
> + {
> + .offset = PCI_CAP_LIST_NEXT,
> + .size = 1,
> + .init_val = 0x00,
> + .ro_mask = 0xFF,
> + .emu_mask = 0xFF,
> + .init = pt_ptr_reg_init,
> + .u.b.read = pt_byte_reg_read,
> + .u.b.write = pt_byte_reg_write,
> + .u.b.restore = NULL,
> + },
> + {
> + .size = 0,
> + },
> +};
> +
> +
> +/*****************************
> + * PCI Express Capability
> + */
> +
> +/* initialize Link Control register */
> +static int pt_linkctrl_reg_init(XenPCIPassthroughState *s,
> + XenPTRegInfo *reg, uint32_t real_offset,
> + uint32_t *data)
> +{
> + uint8_t cap_ver = 0;
> + uint8_t dev_type = 0;
> +
> + cap_ver = pci_get_byte(s->dev.config + real_offset - reg->offset
> + + PCI_EXP_FLAGS)
> + & PCI_EXP_FLAGS_VERS;

Hmm. Weird tabbing? Or maybe it is my mailer?

> + dev_type = (pci_get_byte(s->dev.config + real_offset - reg->offset
> + + PCI_EXP_FLAGS)
> + & PCI_EXP_FLAGS_TYPE) >> 4;

Here it looks better.. but still not sure about the "+ PCI_EXP_FLAGS"?

> +
> + /* no need to initialize in case of Root Complex Integrated Endpoint
> + * with cap_ver 1.x
> + */
> + if ((dev_type == PCI_EXP_TYPE_RC_END) && (cap_ver == 1)) {
> + *data = PT_INVALID_REG;
> + }
> +
> + *data = reg->init_val;
> + return 0;
> +}
> +/* initialize Device Control 2 register */
> +static int pt_devctrl2_reg_init(XenPCIPassthroughState *s,
> + XenPTRegInfo *reg, uint32_t real_offset,
> + uint32_t *data)
> +{
> + uint8_t cap_ver = 0;
> +
> + cap_ver = pci_get_byte(s->dev.config + real_offset - reg->offset
> + + PCI_EXP_FLAGS)
> + & PCI_EXP_FLAGS_VERS;

Tab-mayhem!

> +
> + /* no need to initialize in case of cap_ver 1.x */
> + if (cap_ver == 1) {
> + *data = PT_INVALID_REG;
> + }
> +
> + *data = reg->init_val;
> + return 0;
> +}
> +/* initialize Link Control 2 register */
> +static int pt_linkctrl2_reg_init(XenPCIPassthroughState *s,
> + XenPTRegInfo *reg, uint32_t real_offset,
> + uint32_t *data)
> +{
> + uint32_t reg_field = 0;
> + uint8_t cap_ver = 0;
> +
> + cap_ver = pci_get_byte(s->dev.config + real_offset - reg->offset
> + + PCI_EXP_FLAGS)
> + & PCI_EXP_FLAGS_VERS;

.. strikes again!

> +
> + /* no need to initialize in case of cap_ver 1.x */
> + if (cap_ver == 1) {
> + reg_field = PT_INVALID_REG;
> + } else {
> + /* set Supported Link Speed */
> + uint8_t lnkcap = pci_get_byte(s->dev.config + real_offset - reg->offset
> + + PCI_EXP_LNKCAP);
> + reg_field |= PCI_EXP_LNKCAP_SLS & lnkcap;
> + }
> +
> + *data = reg_field;
> + return 0;
> +}
> +
> +/* PCI Express Capability Structure reg static infomation table */
> +static XenPTRegInfo pt_emu_reg_pcie_tbl[] = {
> + /* Next Pointer reg */
> + {
> + .offset = PCI_CAP_LIST_NEXT,
> + .size = 1,
> + .init_val = 0x00,
> + .ro_mask = 0xFF,
> + .emu_mask = 0xFF,
> + .init = pt_ptr_reg_init,
> + .u.b.read = pt_byte_reg_read,
> + .u.b.write = pt_byte_reg_write,
> + .u.b.restore = NULL,
> + },
> + /* Device Capabilities reg */
> + {
> + .offset = PCI_EXP_DEVCAP,
> + .size = 4,
> + .init_val = 0x00000000,
> + .ro_mask = 0x1FFCFFFF,
> + .emu_mask = 0x10000000,
> + .init = pt_common_reg_init,
> + .u.dw.read = pt_long_reg_read,
> + .u.dw.write = pt_long_reg_write,
> + .u.dw.restore = NULL,
> + },
> + /* Device Control reg */
> + {
> + .offset = PCI_EXP_DEVCTL,
> + .size = 2,
> + .init_val = 0x2810,
> + .ro_mask = 0x8400,
> + .emu_mask = 0xFFFF,
> + .init = pt_common_reg_init,
> + .u.w.read = pt_word_reg_read,
> + .u.w.write = pt_word_reg_write,
> + .u.w.restore = pt_word_reg_restore,
> + },
> + /* Link Control reg */
> + {
> + .offset = PCI_EXP_LNKCTL,
> + .size = 2,
> + .init_val = 0x0000,
> + .ro_mask = 0xFC34,
> + .emu_mask = 0xFFFF,
> + .init = pt_linkctrl_reg_init,
> + .u.w.read = pt_word_reg_read,
> + .u.w.write = pt_word_reg_write,
> + .u.w.restore = pt_word_reg_restore,
> + },
> + /* Device Control 2 reg */
> + {
> + .offset = 0x28,
> + .size = 2,
> + .init_val = 0x0000,
> + .ro_mask = 0xFFE0,
> + .emu_mask = 0xFFFF,
> + .init = pt_devctrl2_reg_init,
> + .u.w.read = pt_word_reg_read,
> + .u.w.write = pt_word_reg_write,
> + .u.w.restore = pt_word_reg_restore,
> + },
> + /* Link Control 2 reg */
> + {
> + .offset = 0x30,
> + .size = 2,
> + .init_val = 0x0000,
> + .ro_mask = 0xE040,
> + .emu_mask = 0xFFFF,
> + .init = pt_linkctrl2_reg_init,
> + .u.w.read = pt_word_reg_read,
> + .u.w.write = pt_word_reg_write,
> + .u.w.restore = pt_word_reg_restore,
> + },
> + {
> + .size = 0,
> + },
> +};
> +
> +
> +/*********************************
> + * Power Management Capability
> + */
> +
> +/* initialize Power Management Capabilities register */
> +static int pt_pmc_reg_init(XenPCIPassthroughState *s,
> + XenPTRegInfo *reg, uint32_t real_offset,
> + uint32_t *data)
> +{
> + PCIDevice *d = &s->dev;
> +
> + if (s->power_mgmt) {
> + /* set Power Management Capabilities register */
> + s->pm_state->pmc_field = pci_get_word(d->config + real_offset);
> + }
> +
> + *data = reg->init_val;
> + return 0;
> +}
> +/* initialize PCI Power Management Control/Status register */
> +static int pt_pmcsr_reg_init(XenPCIPassthroughState *s,
> + XenPTRegInfo *reg, uint32_t real_offset,
> + uint32_t *data)
> +{
> + PCIDevice *d = &s->dev;
> + uint16_t cap_ver = 0;
> + uint16_t v = 0;
> +
> + if (!s->power_mgmt) {
> + *data = reg->init_val;
> + return 0;
> + }
> +
> + /* check PCI Power Management support version */
> + cap_ver = s->pm_state->pmc_field & PCI_PM_CAP_VER_MASK;
> +
> + if (cap_ver > 2) {
> + /* set No Soft Reset */
> + s->pm_state->no_soft_reset =
> + pci_get_byte(d->config + real_offset) & PCI_PM_CTRL_NO_SOFT_RESET;
> + }
> +
> + host_pci_get_word(s->real_device, real_offset, &v);
> + /* wake up real physical device */
> + switch (v & PCI_PM_CTRL_STATE_MASK) {
> + case 0:
> + break;
> + case 1:
> + PT_LOG(d, "Power state transition D1 -> D0active\n");
> + host_pci_set_word(s->real_device, real_offset, 0);
> + break;
> + case 2:
> + PT_LOG(d, "Power state transition D2 -> D0active\n");
> + host_pci_set_word(s->real_device, real_offset, 0);
> + usleep(200);
> + break;
> + case 3:
> + PT_LOG(d, "Power state transition D3hot -> D0active\n");
> + host_pci_set_word(s->real_device, real_offset, 0);
> + usleep(10 * 1000);
> + if (pt_init_pci_config(s)) {
> + return -1;
> + }
> + break;
> + }
> +
> + *data = reg->init_val;
> + return 0;
> +}
> +/* read Power Management Control/Status register */
> +static int pt_pmcsr_reg_read(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint16_t *value, uint16_t valid_mask)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + uint16_t valid_emu_mask = reg->emu_mask;
> +
> + if (!s->power_mgmt) {
> + valid_emu_mask |= PCI_PM_CTRL_STATE_MASK | PCI_PM_CTRL_NO_SOFT_RESET;
> + }
> +
> + valid_emu_mask = valid_emu_mask & valid_mask;
> + *value = PT_MERGE_VALUE(*value, cfg_entry->data, ~valid_emu_mask);
> +
> + return 0;
> +}
> +/* reset Interrupt and I/O resource */
> +static void pt_reset_interrupt_and_io_mapping(XenPCIPassthroughState *s)
> +{
> + PCIDevice *d = &s->dev;
> + PCIIORegion *r;
> + int i = 0;
> + uint8_t e_device = 0;
> + uint8_t e_intx = 0;
> +
> + /* unbind INTx */
> + e_device = PCI_SLOT(s->dev.devfn);
> + e_intx = pci_intx(s);
> +
> + if (s->machine_irq) {
> + if (xc_domain_unbind_pt_irq(xen_xc, xen_domid, s->machine_irq,
> + PT_IRQ_TYPE_PCI, 0, e_device, e_intx, 0)) {
> + PT_ERR(d, "Unbinding of interrupt failed!\n");
> + }
> + }
> +
> + /* clear all virtual region address */
> + for (i = 0; i < PCI_NUM_REGIONS; i++) {
> + r = &d->io_regions[i];
> + r->addr = -1;
> + }
> +
> + /* unmapping BAR */
> + pt_bar_mapping(s, 0, 0);
> +}
> +/* check power state transition */
> +static int check_power_state(XenPCIPassthroughState *s)
> +{
> + XenPTPM *pm_state = s->pm_state;
> + PCIDevice *d = &s->dev;
> + uint16_t read_val = 0;
> + uint16_t cur_state = 0;
> +
> + /* get current power state */
> + if (host_pci_get_word(s->real_device, pm_state->pm_base + PCI_PM_CTRL,
> + &read_val)) {
> + return -1;
> + }
> + cur_state = read_val & PCI_PM_CTRL_STATE_MASK;
> +
> + if (pm_state->req_state != cur_state) {
> + PT_ERR(d, "Failed to change power state. "
> + "(requested state: %d, current state: %d)\n",
> + pm_state->req_state, cur_state);
> + return -1;
> + }
> + return 0;
> +}
> +/* write Power Management Control/Status register */
> +static void pt_from_d3hot_to_d0_with_reset(void *opaque)
> +{
> + XenPCIPassthroughState *s = opaque;
> + XenPTPM *pm_state = s->pm_state;
> + int ret = 0;
> +
> + /* check power state */
> + ret = check_power_state(s);
> +
> + if (ret < 0) {
> + goto out;
> + }
> +
> + pt_init_pci_config(s);
> +
> +out:
> + /* power state transition flags off */
> + pm_state->flags &= ~PT_FLAG_TRANSITING;
> +
> + qemu_free_timer(pm_state->pm_timer);
> + pm_state->pm_timer = NULL;
> +}
> +static void pt_default_power_transition(void *opaque)
> +{
> + XenPCIPassthroughState *ptdev = opaque;
> + XenPTPM *pm_state = ptdev->pm_state;
> +
> + /* check power state */
> + check_power_state(ptdev);
> +
> + /* power state transition flags off */
> + pm_state->flags &= ~PT_FLAG_TRANSITING;
> +
> + qemu_free_timer(pm_state->pm_timer);
> + pm_state->pm_timer = NULL;
> +}
> +static int pt_pmcsr_reg_write(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint16_t *value, uint16_t dev_value,
> + uint16_t valid_mask)
> +{
> + XenPTRegInfo *reg = cfg_entry->reg;
> + PCIDevice *d = &s->dev;
> + uint16_t emu_mask = reg->emu_mask;
> + uint16_t writable_mask = 0;
> + uint16_t throughable_mask = 0;
> + XenPTPM *pm_state = s->pm_state;
> +
> + if (!s->power_mgmt) {
> + emu_mask |= PCI_PM_CTRL_STATE_MASK | PCI_PM_CTRL_NO_SOFT_RESET;
> + }
> +
> + /* modify emulate register */
> + writable_mask = emu_mask & ~reg->ro_mask & valid_mask;
> + cfg_entry->data = PT_MERGE_VALUE(*value, cfg_entry->data, writable_mask);
> +
> + /* create value for writing to I/O device register */
> + throughable_mask = ~emu_mask & valid_mask;
> + *value = PT_MERGE_VALUE(*value, dev_value, throughable_mask);
> +
> + if (!s->power_mgmt) {
> + return 0;
> + }
> +
> + /* set I/O device power state */
> + pm_state->cur_state = dev_value & PCI_PM_CTRL_STATE_MASK;
> +
> + /* set Guest requested PowerState */
> + pm_state->req_state = *value & PCI_PM_CTRL_STATE_MASK;
> +
> + /* check power state transition or not */
> + if (pm_state->cur_state == pm_state->req_state) {
> + /* not power state transition */

.. No power state transition.

> + return 0;
> + }
> +
> + /* check enable power state transition */
> + if ((pm_state->req_state != 0) &&
> + (pm_state->cur_state > pm_state->req_state)) {
> + PT_ERR(d, "Invalid power transition. "
> + "(requested state: %d, current state: %d)\n",
> + pm_state->req_state, pm_state->cur_state);
> +
> + return 0;
> + }
> +
> + /* check if this device supports the requested power state */
> + if (((pm_state->req_state == 1) && !(pm_state->pmc_field & PCI_PM_CAP_D1))
> + || ((pm_state->req_state == 2) &&
> + !(pm_state->pmc_field & PCI_PM_CAP_D2))) {
> + PT_ERR(d, "Invalid power transition. "
> + "(requested state: %d, current state: %d)\n",
> + pm_state->req_state, pm_state->cur_state);
> +
> + return 0;
> + }
> +
> + /* in case of transition related to D3hot, it's necessary to wait 10 ms.
> + * But because writing to register will be performed later on actually,

'performed later on,'
> + * don't start QEMUTimer right now, just alloc and init QEMUTimer here.

You might want to say where it will be started.

> + */
> + if ((pm_state->cur_state == 3) || (pm_state->req_state == 3)) {
> + if (pm_state->req_state == 0) {
> + /* alloc and init QEMUTimer */
> + if (!pm_state->no_soft_reset) {
> + pm_state->pm_timer = qemu_new_timer_ms(rt_clock,
> + pt_from_d3hot_to_d0_with_reset, s);
> +
> + /* reset Interrupt and I/O resource mapping */
> + pt_reset_interrupt_and_io_mapping(s);
> + } else {
> + pm_state->pm_timer = qemu_new_timer_ms(rt_clock,
> + pt_default_power_transition, s);
> + }
> + } else {
> + /* alloc and init QEMUTimer */
> + pm_state->pm_timer = qemu_new_timer_ms(rt_clock,
> + pt_default_power_transition, s);
> + }
> +
> + /* set power state transition delay */
> + pm_state->pm_delay = 10;
> +
> + /* power state transition flags on */
> + pm_state->flags |= PT_FLAG_TRANSITING;
> + }
> + /* in case of transition related to D0, D1 and D2,
> + * no need to use QEMUTimer.
> + * So, we perfom writing to register here and then read it back.
> + */
> + else {
> + /* write power state to I/O device register */
> + host_pci_set_word(s->real_device, pm_state->pm_base + PCI_PM_CTRL,
> + *value);
> +
> + /* in case of transition related to D2,
> + * it's necessary to wait 200 usec.
> + * But because QEMUTimer do not support microsec unit right now,
> + * so we do wait ourself here.

'.. QEMUTimer does not support microsec resolution, we will wait here.'

> + */
> + if ((pm_state->cur_state == 2) || (pm_state->req_state == 2)) {
> + usleep(200);
> + }
> +
> + /* check power state */
> + check_power_state(s);
> +
> + /* recreate value for writing to I/O device register */
> + if (host_pci_get_word(s->real_device, pm_state->pm_base + PCI_PM_CTRL,
> + value)) {
> + return -1;
> + }
> + }
> +
> + return 0;
> +}
> +
> +/* restore Power Management Control/Status register */
> +static int pt_pmcsr_reg_restore(XenPCIPassthroughState *s, XenPTReg *cfg_entry,
> + uint32_t real_offset, uint16_t dev_value,
> + uint16_t *value)
> +{
> + /* create value for restoring to I/O device register
> + * No need to restore, just clear PME Enable and PME Status bit
> + * Note: register type of PME Status bit is RW1C, so clear by writing 1b
> + */
> + *value = (dev_value & ~PCI_PM_CTRL_PME_ENABLE) | PCI_PM_CTRL_PME_STATUS;
> +
> + return 0;
> +}
> +
> +
> +/* Power Management Capability reg static infomation table */
> +static XenPTRegInfo pt_emu_reg_pm_tbl[] = {
> + /* Next Pointer reg */
> + {
> + .offset = PCI_CAP_LIST_NEXT,
> + .size = 1,
> + .init_val = 0x00,
> + .ro_mask = 0xFF,
> + .emu_mask = 0xFF,
> + .init = pt_ptr_reg_init,
> + .u.b.read = pt_byte_reg_read,
> + .u.b.write = pt_byte_reg_write,
> + .u.b.restore = NULL,
> + },
> + /* Power Management Capabilities reg */
> + {
> + .offset = PCI_CAP_FLAGS,
> + .size = 2,
> + .init_val = 0x0000,
> + .ro_mask = 0xFFFF,
> + .emu_mask = 0xF9C8,
> + .init = pt_pmc_reg_init,
> + .u.w.read = pt_word_reg_read,
> + .u.w.write = pt_word_reg_write,
> + .u.w.restore = NULL,
> + },
> + /* PCI Power Management Control/Status reg */
> + {
> + .offset = PCI_PM_CTRL,
> + .size = 2,
> + .init_val = 0x0008,
> + .ro_mask = 0xE1FC,
> + .emu_mask = 0x8100,
> + .init = pt_pmcsr_reg_init,
> + .u.w.read = pt_pmcsr_reg_read,
> + .u.w.write = pt_pmcsr_reg_write,
> + .u.w.restore = pt_pmcsr_reg_restore,
> + },
> + {
> + .size = 0,
> + },
> +};
> +
> +
> +/****************************
> + * Capabilities
> + */
> +
> +/* AER register operations */
> +
> +static void aer_save_one_register(XenPCIPassthroughState *s, int offset)
> +{
> + PCIDevice *d = &s->dev;
> + uint32_t aer_base = s->pm_state->aer_base;
> + uint32_t val = 0;
> +
> + if (host_pci_get_long(s->real_device, aer_base + offset, &val)) {
> + return;
> + }
> + pci_set_long(d->config + aer_base + offset, val);
> +}
> +static void pt_aer_reg_save(XenPCIPassthroughState *s)
> +{
> + /* after reset, following register values should be restored.
> + * So, save them.
> + */
> + aer_save_one_register(s, PCI_ERR_UNCOR_MASK);
> + aer_save_one_register(s, PCI_ERR_UNCOR_SEVER);
> + aer_save_one_register(s, PCI_ERR_COR_MASK);
> + aer_save_one_register(s, PCI_ERR_CAP);
> +}
> +static void aer_restore_one_register(XenPCIPassthroughState *s, int offset)
> +{
> + PCIDevice *d = &s->dev;
> + uint32_t aer_base = s->pm_state->aer_base;
> + uint32_t config = 0;
> +
> + config = pci_get_long(d->config + aer_base + offset);
> + host_pci_set_long(s->real_device, aer_base + offset, config);
> +}
> +static void pt_aer_reg_restore(XenPCIPassthroughState *s)
> +{
> + /* the following registers should be reconfigured to correct values

the -> The
> + * after reset. restore them.

reset. -> reset, hence
> + * other registers should not be reconfigured after reset

'Other'

> + * if there is no reason

So what are the other registers? Every other register _but_ the
ones that are enumerated here? If so, please state that explicitly.

> + */
> + aer_restore_one_register(s, PCI_ERR_UNCOR_MASK);
> + aer_restore_one_register(s, PCI_ERR_UNCOR_SEVER);
> + aer_restore_one_register(s, PCI_ERR_COR_MASK);
> + aer_restore_one_register(s, PCI_ERR_CAP);
> +}
> +
> +/* capability structure register group size functions */
> +
> +static int pt_reg_grp_size_init(XenPCIPassthroughState *s,
> + const XenPTRegGroupInfo *grp_reg,
> + uint32_t base_offset, uint8_t *size)
> +{
> + *size = grp_reg->grp_size;
> + return 0;
> +}
> +/* get Power Management Capability Structure register group size */
> +static int pt_pm_size_init(XenPCIPassthroughState *s,
> + const XenPTRegGroupInfo *grp_reg,
> + uint32_t base_offset, uint8_t *size)
> +{
> + *size = grp_reg->grp_size;
> +
> + if (!s->power_mgmt) {
> + return 0;
> + }
> +
> + s->pm_state = g_new0(XenPTPM, 1);
> +
> + /* set Power Management Capability base offset */
> + s->pm_state->pm_base = base_offset;
> +
> + /* find AER register and set AER Capability base offset */
> + s->pm_state->aer_base = host_pci_find_ext_cap_offset(s->real_device,
> + PCI_EXT_CAP_ID_ERR);
> +
> + /* save AER register */
> + if (s->pm_state->aer_base) {
> + pt_aer_reg_save(s);
> + }
> +
> + return 0;
> +}
> +/* get Vendor Specific Capability Structure register group size */
> +static int pt_vendor_size_init(XenPCIPassthroughState *s,
> + const XenPTRegGroupInfo *grp_reg,
> + uint32_t base_offset, uint8_t *size)
> +{
> + *size = pci_get_byte(s->dev.config + base_offset + 0x02);
> + return 0;
> +}
> +/* get PCI Express Capability Structure register group size */
> +static int pt_pcie_size_init(XenPCIPassthroughState *s,
> + const XenPTRegGroupInfo *grp_reg,
> + uint32_t base_offset, uint8_t *size)
> +{
> + PCIDevice *d = &s->dev;
> + uint16_t exp_flag = 0;
> + uint16_t type = 0;
> + uint16_t version = 0;
> + uint8_t pcie_size = 0;
> +
> + exp_flag = pci_get_word(d->config + base_offset + PCI_EXP_FLAGS);
> + type = (exp_flag & PCI_EXP_FLAGS_TYPE) >> 4;
> + version = exp_flag & PCI_EXP_FLAGS_VERS;
> +
> + /* calculate size depend on capability version and device/port type */
> + /* in case of PCI Express Base Specification Rev 1.x */
> + if (version == 1) {
> + /* The PCI Express Capabilities, Device Capabilities, and Device
> + * Status/Control registers are required for all PCI Express devices.
> + * The Link Capabilities and Link Status/Control are required for all
> + * Endpoints that are not Root Complex Integrated Endpoints. Endpoints
> + * are not required to implement registers other than those listed
> + * above and terminate the capability structure.
> + */
> + switch (type) {
> + case PCI_EXP_TYPE_ENDPOINT:
> + case PCI_EXP_TYPE_LEG_END:
> + pcie_size = 0x14;
> + break;
> + case PCI_EXP_TYPE_RC_END:
> + /* has no link */
> + pcie_size = 0x0C;
> + break;
> + /* only EndPoint passthrough is supported */
> + case PCI_EXP_TYPE_ROOT_PORT:
> + case PCI_EXP_TYPE_UPSTREAM:
> + case PCI_EXP_TYPE_DOWNSTREAM:
> + case PCI_EXP_TYPE_PCI_BRIDGE:
> + case PCI_EXP_TYPE_PCIE_BRIDGE:
> + case PCI_EXP_TYPE_RC_EC:
> + default:
> + PT_ERR(d, "Internal error: Unsupported device/port type (%d).\n",
> + type);
> + return -1;
> + }
> + }
> + /* in case of PCI Express Base Specification Rev 2.0 */
> + else if (version == 2) {
> + switch (type) {
> + case PCI_EXP_TYPE_ENDPOINT:
> + case PCI_EXP_TYPE_LEG_END:
> + case PCI_EXP_TYPE_RC_END:
> + /* For Functions that do not implement the registers,
> + * these spaces must be hardwired to 0b.

So this comment applies to the functions below the 'break' right?
Should you move it? But that doesn't make sense - we end up hitting
return -1 so it bails out and does not return 0b. Hmmm.. So what is
this comment referring to?

> + */
> + pcie_size = 0x3C;
> + break;
> + /* only EndPoint passthrough is supported */
> + case PCI_EXP_TYPE_ROOT_PORT:
> + case PCI_EXP_TYPE_UPSTREAM:
> + case PCI_EXP_TYPE_DOWNSTREAM:
> + case PCI_EXP_TYPE_PCI_BRIDGE:
> + case PCI_EXP_TYPE_PCIE_BRIDGE:
> + case PCI_EXP_TYPE_RC_EC:
> + default:
> + PT_ERR(d, "Internal error: Unsupported device/port type (%d).\n",
> + type);
> + return -1;
> + }
> + } else {
> + PT_ERR(d, "Internal error: Unsupported capability version (%d).\n",
> + version);
> + return -1;
> + }
> +
> + *size = pcie_size;
> + return 0;
> +}
> +
> +static const XenPTRegGroupInfo pt_emu_reg_grp_tbl[] = {
> + /* Header Type0 reg group */
> + {
> + .grp_id = 0xFF,
> + .grp_type = GRP_TYPE_EMU,
> + .grp_size = 0x40,
> + .size_init = pt_reg_grp_size_init,
> + .emu_reg_tbl = pt_emu_reg_header0_tbl,
> + },
> + /* PCI PowerManagement Capability reg group */
> + {
> + .grp_id = PCI_CAP_ID_PM,
> + .grp_type = GRP_TYPE_EMU,
> + .grp_size = PCI_PM_SIZEOF,
> + .size_init = pt_pm_size_init,
> + .emu_reg_tbl = pt_emu_reg_pm_tbl,
> + },
> + /* AGP Capability Structure reg group */
> + {
> + .grp_id = PCI_CAP_ID_AGP,
> + .grp_type = GRP_TYPE_HARDWIRED,
> + .grp_size = 0x30,
> + .size_init = pt_reg_grp_size_init,
> + },
> + /* Vital Product Data Capability Structure reg group */
> + {
> + .grp_id = PCI_CAP_ID_VPD,
> + .grp_type = GRP_TYPE_EMU,
> + .grp_size = 0x08,
> + .size_init = pt_reg_grp_size_init,
> + .emu_reg_tbl = pt_emu_reg_vpd_tbl,
> + },
> + /* Slot Identification reg group */
> + {
> + .grp_id = PCI_CAP_ID_SLOTID,
> + .grp_type = GRP_TYPE_HARDWIRED,
> + .grp_size = 0x04,
> + .size_init = pt_reg_grp_size_init,
> + },
> + /* PCI-X Capabilities List Item reg group */
> + {
> + .grp_id = PCI_CAP_ID_PCIX,
> + .grp_type = GRP_TYPE_HARDWIRED,
> + .grp_size = 0x18,
> + .size_init = pt_reg_grp_size_init,
> + },
> + /* Vendor Specific Capability Structure reg group */
> + {
> + .grp_id = PCI_CAP_ID_VNDR,
> + .grp_type = GRP_TYPE_EMU,
> + .grp_size = 0xFF,
> + .size_init = pt_vendor_size_init,
> + .emu_reg_tbl = pt_emu_reg_vendor_tbl,
> + },
> + /* SHPC Capability List Item reg group */
> + {
> + .grp_id = PCI_CAP_ID_SHPC,
> + .grp_type = GRP_TYPE_HARDWIRED,
> + .grp_size = 0x08,
> + .size_init = pt_reg_grp_size_init,
> + },
> + /* Subsystem ID and Subsystem Vendor ID Capability List Item reg group */
> + {
> + .grp_id = PCI_CAP_ID_SSVID,
> + .grp_type = GRP_TYPE_HARDWIRED,
> + .grp_size = 0x08,
> + .size_init = pt_reg_grp_size_init,
> + },
> + /* AGP 8x Capability Structure reg group */
> + {
> + .grp_id = PCI_CAP_ID_AGP3,
> + .grp_type = GRP_TYPE_HARDWIRED,
> + .grp_size = 0x30,
> + .size_init = pt_reg_grp_size_init,
> + },
> + /* PCI Express Capability Structure reg group */
> + {
> + .grp_id = PCI_CAP_ID_EXP,
> + .grp_type = GRP_TYPE_EMU,
> + .grp_size = 0xFF,
> + .size_init = pt_pcie_size_init,
> + .emu_reg_tbl = pt_emu_reg_pcie_tbl,
> + },
> + {
> + .grp_size = 0,
> + },
> +};
> +
> +/* initialize Capabilities Pointer or Next Pointer register */
> +static int pt_ptr_reg_init(XenPCIPassthroughState *s,
> + XenPTRegInfo *reg, uint32_t real_offset,
> + uint32_t *data)
> +{
> + /* uint32_t reg_field = (uint32_t)s->dev.config[real_offset]; */
> + uint32_t reg_field = pci_get_byte(s->dev.config + real_offset);

There is no check whether real_offset > than the size of what is
in dev.config. Perhaps that should be done?

> + int i;
> +
> + /* find capability offset */
> + while (reg_field) {
> + for (i = 0; pt_emu_reg_grp_tbl[i].grp_size != 0; i++) {
> + if (pt_hide_dev_cap(s->real_device,
> + pt_emu_reg_grp_tbl[i].grp_id)) {
> + continue;
> + }
> + if (pt_emu_reg_grp_tbl[i].grp_id == s->dev.config[reg_field]) {
> + if (pt_emu_reg_grp_tbl[i].grp_type == GRP_TYPE_EMU) {
> + goto out;
> + }
> + /* ignore the 0 hardwired capability, find next one */
> + break;
> + }
> + }
> + /* next capability */
> + /* reg_field = (uint32_t)s->dev.config[reg_field + 1]; */
> + reg_field = pci_get_byte(s->dev.config + reg_field + 1);
> + }
> +
> +out:
> + *data = reg_field;
> + return 0;
> +}
> +
> +
> +/*************
> + * Main
> + */
> +
> +/* restore a part of I/O device register */
> +static int pt_config_restore(XenPCIPassthroughState *s)
> +{
> + XenPTRegGroup *reg_grp_entry = NULL;
> + XenPTReg *reg_entry = NULL;
> + XenPTRegInfo *reg = NULL;
> + uint32_t real_offset = 0;
> + uint32_t read_val = 0;
> + uint32_t val = 0;
> + int rc = 0;
> +
> + /* find emulate register group entry */
> + QLIST_FOREACH(reg_grp_entry, &s->reg_grp_tbl, entries) {
> + /* find emulate register entry */
> + QLIST_FOREACH(reg_entry, &reg_grp_entry->reg_tbl_list, entries) {
> + reg = reg_entry->reg;
> +
> + /* check whether restoring is needed */
> + if (!reg->u.b.restore) {
> + continue;
> + }
> +
> + real_offset = reg_grp_entry->base_offset + reg->offset;
> +
> + /* read I/O device register value */
> + rc = host_pci_get_block(s->real_device, real_offset,
> + (uint8_t *)&read_val, reg->size);
> +
> + if (rc < 0) {
> + PT_ERR(&s->dev, "pci_read_block failed. "
> + "return value: %d.\n", rc);
> + memset(&read_val, 0xff, reg->size);
> + }
> +
> + val = 0;
> +
> + /* restore based on register size */
> + switch (reg->size) {
> + case 1:
> + /* byte register */
> + rc = reg->u.b.restore(s, reg_entry, real_offset,
> + (uint8_t)read_val, (uint8_t *)&val);
> + break;
> + case 2:
> + /* word register */
> + rc = reg->u.w.restore(s, reg_entry, real_offset,
> + (uint16_t)read_val, (uint16_t *)&val);
> + break;
> + case 4:
> + /* double word register */
> + rc = reg->u.dw.restore(s, reg_entry, real_offset,
> + (uint32_t)read_val, (uint32_t *)&val);
> + break;
> + }
> +
> + /* restoring error */
> + if (rc < 0) {
> + xen_shutdown_fatal_error("Internal error: Invalid restoring."
> + " (%s, rc: %d)\n", __func__, rc);
> + return -1;
> + }
> +
> + PT_LOG_CONFIG(&s->dev, real_offset, val, reg->size);
> +
> + rc = host_pci_set_block(s->real_device, real_offset,
> + (uint8_t *)&val, reg->size);
> +
> + if (rc < 0) {
> + PT_ERR(&s->dev, "pci_write_block failed. "
> + "return value: %d.\n", rc);
> + return -1;
> + }
> + }
> + }
> +
> + /* if AER supported, restore it */
> + if (s->pm_state->aer_base) {
> + pt_aer_reg_restore(s);
> + }
> + return 0;
> +}
> +/* reinitialize all emulate registers */
> +static int pt_config_reinit(XenPCIPassthroughState *s)
> +{
> + XenPTRegGroup *reg_grp_entry = NULL;
> + XenPTReg *reg_entry = NULL;
> + XenPTRegInfo *reg = NULL;
> + int rc = 0;
> +
> + /* find emulate register group entry */
> + QLIST_FOREACH(reg_grp_entry, &s->reg_grp_tbl, entries) {
> + /* find emulate register entry */
> + QLIST_FOREACH(reg_entry, &reg_grp_entry->reg_tbl_list, entries) {
> + reg = reg_entry->reg;
> + if (reg->init) {
> + /* initialize emulate register */
> + rc = reg->init(s, reg_entry->reg,
> + reg_grp_entry->base_offset + reg->offset,
> + &reg_entry->data);
> + if (rc < 0) {
> + return rc;
> + }
> + }
> + }
> + }
> + return 0;
> +}
> +
> +static int pt_init_pci_config(XenPCIPassthroughState *s)
> +{
> + PCIDevice *d = &s->dev;
> + int rc = 0;
> +
> + PT_LOG(d, "Reinitialize PCI configuration registers due to power state"
> + " transition with internal reset.\n");
> +
> + /* restore a part of I/O device register */
> + rc = pt_config_restore(s);
> + if (rc < 0) {
> + return rc;
> + }
> +
> + /* reinitialize all emulate register */
> + rc = pt_config_reinit(s);
> + if (rc < 0) {
> + return rc;
> + }
> +
> + /* rebind machine_irq to device */
> + if (s->machine_irq != 0) {
> + uint8_t e_device = PCI_SLOT(s->dev.devfn);
> + uint8_t e_intx = pci_intx(s);
> +
> + rc = xc_domain_bind_pt_pci_irq(xen_xc, xen_domid, s->machine_irq, 0,
> + e_device, e_intx);
> + if (rc < 0) {
> + PT_ERR(d, "Rebinding of interrupt failed! rc=%d\n", rc);
> + }
> + }
> +
> + return rc;
> +}
> +
> +static uint8_t find_cap_offset(XenPCIPassthroughState *s, uint8_t cap)
> +{
> + uint8_t id;
> + int max_cap = 48;

You need to use #define for that. Also you might want just make it an
unsigned.

> + uint8_t pos = PCI_CAPABILITY_LIST;
> + uint8_t status = 0;
> +
> + if (host_pci_get_byte(s->real_device, PCI_STATUS, &status)) {
> + return 0;
> + }
> + if ((status & PCI_STATUS_CAP_LIST) == 0) {
> + return 0;
> + }
> +
> + while (max_cap--) {
> + if (host_pci_get_byte(s->real_device, pos, &pos)) {
> + break;
> + }
> + if (pos < 0x40) {

Can you explain why? (I presume it is b/c the capabilities entries do
not exist before 0x40 offset?)

> + break;
> + }
> +
> + pos &= ~3;
> + if (host_pci_get_byte(s->real_device, pos + PCI_CAP_LIST_ID, &id)) {
> + break;
> + }
> +
> + if (id == 0xff) {
> + break;
> + }
> + if (id == cap) {
> + return pos;
> + }
> +
> + pos += PCI_CAP_LIST_NEXT;
> + }
> + return 0;
> +}
> +
> +static int pt_config_reg_init(XenPCIPassthroughState *s,
> + XenPTRegGroup *reg_grp, XenPTRegInfo *reg)
> +{
> + XenPTReg *reg_entry;
> + uint32_t data = 0;
> + int rc = 0;
> +
> + reg_entry = g_new0(XenPTReg, 1);
> + reg_entry->reg = reg;
> +
> + if (reg->init) {
> + /* initialize emulate register */
> + rc = reg->init(s, reg_entry->reg,
> + reg_grp->base_offset + reg->offset, &data);
> + if (rc < 0) {
> + free(reg_entry);
> + return rc;
> + }
> + if (data == PT_INVALID_REG) {
> + /* free unused BAR register entry */
> + free(reg_entry);
> + return 0;
> + }
> + /* set register value */
> + reg_entry->data = data;
> + }
> + /* list add register entry */
> + QLIST_INSERT_HEAD(&reg_grp->reg_tbl_list, reg_entry, entries);
> +
> + return 0;
> +}
> +
> +int pt_config_init(XenPCIPassthroughState *s)
> +{
> + XenPTRegGroup *reg_grp_entry = NULL;
> + uint32_t reg_grp_offset = 0;
> + XenPTRegInfo *reg_tbl = NULL;
> + int i, j, rc;
> +
> + QLIST_INIT(&s->reg_grp_tbl);
> +
> + for (i = 0; pt_emu_reg_grp_tbl[i].grp_size != 0; i++) {
> + if (pt_emu_reg_grp_tbl[i].grp_id != 0xFF) {
> + if (pt_hide_dev_cap(s->real_device,
> + pt_emu_reg_grp_tbl[i].grp_id)) {
> + continue;
> + }
> +
> + reg_grp_offset = find_cap_offset(s, pt_emu_reg_grp_tbl[i].grp_id);
> +
> + if (!reg_grp_offset) {
> + continue;
> + }
> + }
> +
> + reg_grp_entry = g_new0(XenPTRegGroup, 1);
> + QLIST_INIT(&reg_grp_entry->reg_tbl_list);
> + QLIST_INSERT_HEAD(&s->reg_grp_tbl, reg_grp_entry, entries);
> +
> + reg_grp_entry->base_offset = reg_grp_offset;
> + reg_grp_entry->reg_grp = pt_emu_reg_grp_tbl + i;
> + if (pt_emu_reg_grp_tbl[i].size_init) {
> + /* get register group size */
> + rc = pt_emu_reg_grp_tbl[i].size_init(s, reg_grp_entry->reg_grp,
> + reg_grp_offset,
> + &reg_grp_entry->size);
> + if (rc < 0) {
> + pt_config_delete(s);
> + return rc;
> + }
> + }
> +
> + if (pt_emu_reg_grp_tbl[i].grp_type == GRP_TYPE_EMU) {
> + if (pt_emu_reg_grp_tbl[i].emu_reg_tbl) {
> + reg_tbl = pt_emu_reg_grp_tbl[i].emu_reg_tbl;
> + /* initialize capability register */
> + for (j = 0; reg_tbl->size != 0; j++, reg_tbl++) {
> + /* initialize capability register */
> + rc = pt_config_reg_init(s, reg_grp_entry, reg_tbl);
> + if (rc < 0) {
> + pt_config_delete(s);
> + return rc;
> + }
> + }
> + }
> + }
> + reg_grp_offset = 0;

Can you move this to the top of the loop?
> + }
> +
> + return 0;
> +}
> +
> +/* delete all emulate register */
> +void pt_config_delete(XenPCIPassthroughState *s)
> +{
> + struct XenPTRegGroup *reg_group, *next_grp;
> + struct XenPTReg *reg, *next_reg;
> +
> + /* free Power Management info table */
> + if (s->pm_state) {
> + if (s->pm_state->pm_timer) {
> + qemu_del_timer(s->pm_state->pm_timer);
> + qemu_free_timer(s->pm_state->pm_timer);
> + s->pm_state->pm_timer = NULL;
> + }
> +
> + g_free(s->pm_state);
> + }
> +
> + /* free all register group entry */
> + QLIST_FOREACH_SAFE(reg_group, &s->reg_grp_tbl, entries, next_grp) {
> + /* free all register entry */
> + QLIST_FOREACH_SAFE(reg, &reg_group->reg_tbl_list, entries, next_reg) {
> + QLIST_REMOVE(reg, entries);
> + g_free(reg);
> + }
> +
> + QLIST_REMOVE(reg_group, entries);
> + g_free(reg_group);
> + }
> +}
> --
> Anthony PERARD
>
>
> _______________________________________________
> Xen-devel mailing list
> Xen-devel@lists.xensource.com
> http://lists.xensource.com/xen-devel

_______________________________________________
Xen-devel mailing list
Xen-devel@lists.xensource.com
http://lists.xensource.com/xen-devel