Mailing List Archive

bpo-45876: Correctly rounded stdev() and pstdev() for the Decimal case (GH-29828)
https://github.com/python/cpython/commit/a39f46afdead515e7ac3722464b5ee8d7b0b2c9b
commit: a39f46afdead515e7ac3722464b5ee8d7b0b2c9b
branch: main
author: Raymond Hettinger <rhettinger@users.noreply.github.com>
committer: rhettinger <rhettinger@users.noreply.github.com>
date: 2021-11-30T18:20:08-06:00
summary:

bpo-45876: Correctly rounded stdev() and pstdev() for the Decimal case (GH-29828)

files:
M Lib/statistics.py
M Lib/test/test_statistics.py

diff --git a/Lib/statistics.py b/Lib/statistics.py
index cf8eaa0a61e62..9f1efa21b15e3 100644
--- a/Lib/statistics.py
+++ b/Lib/statistics.py
@@ -137,7 +137,7 @@
from itertools import groupby, repeat
from bisect import bisect_left, bisect_right
from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum
-from operator import itemgetter, mul
+from operator import mul
from collections import Counter, namedtuple

_SQRT2 = sqrt(2.0)
@@ -248,6 +248,28 @@ def _exact_ratio(x):

x is expected to be an int, Fraction, Decimal or float.
"""
+
+ # XXX We should revisit whether using fractions to accumulate exact
+ # ratios is the right way to go.
+
+ # The integer ratios for binary floats can have numerators or
+ # denominators with over 300 decimal digits. The problem is more
+ # acute with decimal floats where the the default decimal context
+ # supports a huge range of exponents from Emin=-999999 to
+ # Emax=999999. When expanded with as_integer_ratio(), numbers like
+ # Decimal('3.14E+5000') and Decimal('3.14E-5000') have large
+ # numerators or denominators that will slow computation.
+
+ # When the integer ratios are accumulated as fractions, the size
+ # grows to cover the full range from the smallest magnitude to the
+ # largest. For example, Fraction(3.14E+300) + Fraction(3.14E-300),
+ # has a 616 digit numerator. Likewise,
+ # Fraction(Decimal('3.14E+5000')) + Fraction(Decimal('3.14E-5000'))
+ # has 10,003 digit numerator.
+
+ # This doesn't seem to have been problem in practice, but it is a
+ # potential pitfall.
+
try:
return x.as_integer_ratio()
except AttributeError:
@@ -305,28 +327,60 @@ def _fail_neg(values, errmsg='negative value'):
raise StatisticsError(errmsg)
yield x

-def _isqrt_frac_rto(n: int, m: int) -> float:
+
+def _integer_sqrt_of_frac_rto(n: int, m: int) -> int:
"""Square root of n/m, rounded to the nearest integer using round-to-odd."""
# Reference: https://www.lri.fr/~melquion/doc/05-imacs17_1-expose.pdf
a = math.isqrt(n // m)
return a | (a*a*m != n)

-# For 53 bit precision floats, the _sqrt_frac() shift is 109.
-_sqrt_shift: int = 2 * sys.float_info.mant_dig + 3

-def _sqrt_frac(n: int, m: int) -> float:
+# For 53 bit precision floats, the bit width used in
+# _float_sqrt_of_frac() is 109.
+_sqrt_bit_width: int = 2 * sys.float_info.mant_dig + 3
+
+
+def _float_sqrt_of_frac(n: int, m: int) -> float:
"""Square root of n/m as a float, correctly rounded."""
# See principle and proof sketch at: https://bugs.python.org/msg407078
- q = (n.bit_length() - m.bit_length() - _sqrt_shift) // 2
+ q = (n.bit_length() - m.bit_length() - _sqrt_bit_width) // 2
if q >= 0:
- numerator = _isqrt_frac_rto(n, m << 2 * q) << q
+ numerator = _integer_sqrt_of_frac_rto(n, m << 2 * q) << q
denominator = 1
else:
- numerator = _isqrt_frac_rto(n << -2 * q, m)
+ numerator = _integer_sqrt_of_frac_rto(n << -2 * q, m)
denominator = 1 << -q
return numerator / denominator # Convert to float


+def _decimal_sqrt_of_frac(n: int, m: int) -> Decimal:
+ """Square root of n/m as a Decimal, correctly rounded."""
+ # Premise: For decimal, computing (n/m).sqrt() can be off
+ # by 1 ulp from the correctly rounded result.
+ # Method: Check the result, moving up or down a step if needed.
+ if n <= 0:
+ if not n:
+ return Decimal('0.0')
+ n, m = -n, -m
+
+ root = (Decimal(n) / Decimal(m)).sqrt()
+ nr, dr = root.as_integer_ratio()
+
+ plus = root.next_plus()
+ np, dp = plus.as_integer_ratio()
+ # test: n / m > ((root + plus) / 2) ** 2
+ if 4 * n * (dr*dp)**2 > m * (dr*np + dp*nr)**2:
+ return plus
+
+ minus = root.next_minus()
+ nm, dm = minus.as_integer_ratio()
+ # test: n / m < ((root + minus) / 2) ** 2
+ if 4 * n * (dr*dm)**2 < m * (dr*nm + dm*nr)**2:
+ return minus
+
+ return root
+
+
# === Measures of central tendency (averages) ===

def mean(data):
@@ -869,7 +923,7 @@ def stdev(data, xbar=None):
if hasattr(T, 'sqrt'):
var = _convert(mss, T)
return var.sqrt()
- return _sqrt_frac(mss.numerator, mss.denominator)
+ return _float_sqrt_of_frac(mss.numerator, mss.denominator)


def pstdev(data, mu=None):
@@ -888,10 +942,9 @@ def pstdev(data, mu=None):
raise StatisticsError('pstdev requires at least one data point')
T, ss = _ss(data, mu)
mss = ss / n
- if hasattr(T, 'sqrt'):
- var = _convert(mss, T)
- return var.sqrt()
- return _sqrt_frac(mss.numerator, mss.denominator)
+ if issubclass(T, Decimal):
+ return _decimal_sqrt_of_frac(mss.numerator, mss.denominator)
+ return _float_sqrt_of_frac(mss.numerator, mss.denominator)


# === Statistics for relations between two inputs ===
diff --git a/Lib/test/test_statistics.py b/Lib/test/test_statistics.py
index 771a03e707ee0..bacb76a9b036b 100644
--- a/Lib/test/test_statistics.py
+++ b/Lib/test/test_statistics.py
@@ -2164,9 +2164,9 @@ def test_center_not_at_mean(self):

class TestSqrtHelpers(unittest.TestCase):

- def test_isqrt_frac_rto(self):
+ def test_integer_sqrt_of_frac_rto(self):
for n, m in itertools.product(range(100), range(1, 1000)):
- r = statistics._isqrt_frac_rto(n, m)
+ r = statistics._integer_sqrt_of_frac_rto(n, m)
self.assertIsInstance(r, int)
if r*r*m == n:
# Root is exact
@@ -2177,7 +2177,7 @@ def test_isqrt_frac_rto(self):
self.assertTrue(m * (r - 1)**2 < n < m * (r + 1)**2)

@requires_IEEE_754
- def test_sqrt_frac(self):
+ def test_float_sqrt_of_frac(self):

def is_root_correctly_rounded(x: Fraction, root: float) -> bool:
if not x:
@@ -2204,22 +2204,59 @@ def is_root_correctly_rounded(x: Fraction, root: float) -> bool:
denonimator: int = randrange(10 ** randrange(50)) + 1
with self.subTest(numerator=numerator, denonimator=denonimator):
x: Fraction = Fraction(numerator, denonimator)
- root: float = statistics._sqrt_frac(numerator, denonimator)
+ root: float = statistics._float_sqrt_of_frac(numerator, denonimator)
self.assertTrue(is_root_correctly_rounded(x, root))

# Verify that corner cases and error handling match math.sqrt()
- self.assertEqual(statistics._sqrt_frac(0, 1), 0.0)
+ self.assertEqual(statistics._float_sqrt_of_frac(0, 1), 0.0)
with self.assertRaises(ValueError):
- statistics._sqrt_frac(-1, 1)
+ statistics._float_sqrt_of_frac(-1, 1)
with self.assertRaises(ValueError):
- statistics._sqrt_frac(1, -1)
+ statistics._float_sqrt_of_frac(1, -1)

# Error handling for zero denominator matches that for Fraction(1, 0)
with self.assertRaises(ZeroDivisionError):
- statistics._sqrt_frac(1, 0)
+ statistics._float_sqrt_of_frac(1, 0)

# The result is well defined if both inputs are negative
- self.assertAlmostEqual(statistics._sqrt_frac(-2, -1), math.sqrt(2.0))
+ self.assertEqual(statistics._float_sqrt_of_frac(-2, -1), statistics._float_sqrt_of_frac(2, 1))
+
+ def test_decimal_sqrt_of_frac(self):
+ root: Decimal
+ numerator: int
+ denominator: int
+
+ for root, numerator, denominator in [.
+ (Decimal('0.4481904599041192673635338663'), 200874688349065940678243576378, 1000000000000000000000000000000), # No adj
+ (Decimal('0.7924949131383786609961759598'), 628048187350206338833590574929, 1000000000000000000000000000000), # Adj up
+ (Decimal('0.8500554152289934068192208727'), 722594208960136395984391238251, 1000000000000000000000000000000), # Adj down
+ ]:
+ with decimal.localcontext(decimal.DefaultContext):
+ self.assertEqual(statistics._decimal_sqrt_of_frac(numerator, denominator), root)
+
+ # Confirm expected root with a quad precision decimal computation
+ with decimal.localcontext(decimal.DefaultContext) as ctx:
+ ctx.prec *= 4
+ high_prec_ratio = Decimal(numerator) / Decimal(denominator)
+ ctx.rounding = decimal.ROUND_05UP
+ high_prec_root = high_prec_ratio.sqrt()
+ with decimal.localcontext(decimal.DefaultContext):
+ target_root = +high_prec_root
+ self.assertEqual(root, target_root)
+
+ # Verify that corner cases and error handling match Decimal.sqrt()
+ self.assertEqual(statistics._decimal_sqrt_of_frac(0, 1), 0.0)
+ with self.assertRaises(decimal.InvalidOperation):
+ statistics._decimal_sqrt_of_frac(-1, 1)
+ with self.assertRaises(decimal.InvalidOperation):
+ statistics._decimal_sqrt_of_frac(1, -1)
+
+ # Error handling for zero denominator matches that for Fraction(1, 0)
+ with self.assertRaises(ZeroDivisionError):
+ statistics._decimal_sqrt_of_frac(1, 0)
+
+ # The result is well defined if both inputs are negative
+ self.assertEqual(statistics._decimal_sqrt_of_frac(-2, -1), statistics._decimal_sqrt_of_frac(2, 1))


class TestStdev(VarianceStdevMixin, NumericTestCase):

_______________________________________________
Python-checkins mailing list
Python-checkins@python.org
https://mail.python.org/mailman/listinfo/python-checkins